
E[Ri] = rf + βi

(
E[Rm]− rf

)
, (1.1)

where E[Ri] is the expected return on asset i, E[Rm] is the expected market rate of return,

rf is the risk-free rate of return, and βi is the proportionality coefficient, widely known as

‘beta’ and given by the equation

βi =
Cov[Ri, Rm]

Cov[Rm, Rm]
. (1.2)
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1. Introduction

The Capital Asset Pricing Model (CAPM) has profoundly influenced Finance and In-

surance, with numerous articles and books written on the topic by academics and prac-

titioners (e.g., Levy, 2011; and references therein). In this paper we aim at modifying 

the classical CAPM to accommodate some of the ‘peculiarities’ of insurance risks, in 

particular their positivity, skewness, and heavy tails.

We start with the obvious. Namely, the classical CAPM links the expected riskiness 

of portfolio constituents with the overall portfolio riskiness. Specifically, expressed in its 

classical form, the CAPM equation is
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At this initial point of our discussion, it is instructive to recall the classical linear regres-

sion equation, which, under the assumption of bivariate normality on the pair (Ri, Rm),

says that the conditional expectation E[Ri | Rm = s], as a function of s, is the straight line

a+ bs with the slope b = βi and the intercept a = E[Ri]− βiE[Rm]. This representation

and its similarity to CAPM equation (1.1) explain the central role of the multivariate

normal distribution in the CAPM literature.

Of course, departures from the normality assumption (e.g., Owen and Rabinovitch,

1983, for elliptical distributions) have been established and extensively discussed (Levy,

2011; and references therein). Indeed, risks generally deviate from symmetry and are often

heavy tailed. In addition, insurance risks are as a rule positively valued (e.g., Klugman et

al., 2008). Due to these and other reasons, when applying the CAPM equation to price

insurance products or allocate capital to individual risks, we inevitably find ourselves in

a position of doubt. In this paper, therefore, we propose to tweak the classical CAPM

so that it would mitigate, if not resolve, the aforementioned issues. We illustrate the

underlying idea in the next section using the so-called modified-variance risk measure and

the corresponding risk capital allocation.

Throughout the rest of the paper, we use X1, X2, . . . , Xd to denote real-valued (i.e.,

not necessarily positive) risk random variables whose aggregate riskiness is expressed by

a random variable S (e.g., S = X1 +X2 + · · ·+Xd).

2. An illuminating example and our general aim

We start with an example illustrating that departure from normality is not difficult to

achieve. To make our initial arguments as simple as possible, we work with the modified-

variance risk measure (Heilmann, 1989)

mv[S] = E[S] +
1

E[S]
Var[S]

=
E[S2]

E[S]
(2.1)

and, for i ∈ {1, . . . , d}, the corresponding risk capital allocation rule

MV[Xi | S] =
E[XiS]

E[S]
. (2.2)

According to our view of the CAPM, we want to express MV[Xi | S], which measures

the riskiness of Xi within the collection of risks, in terms of mv[S], which measures

the aggregate riskiness. We achieve this goal with the help of simple algebra and, most

importantly, without imposing any distributional constraints on the pair (Xi, S). Namely,
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we have the equations

MV[Xi | S]− E[Xi] =
E[XiS]

E[S]
− E[Xi]

=
Cov[Xi, S]

E[S]

=
Cov[Xi, S]

Cov[S, S]

Cov[S, S]

E[S]

=
Cov[Xi, S]

Cov[S, S]

E[S2]− (E[S])2

E[S]

= βi

(
mv[S]− E[S]

)
, (2.3)

where the ‘beta’

βi =
Cov[Xi, S]

Cov[S, S]
(2.4)

is of the same form as that given by equation (1.2).

Hence, in summary, in the modified-variance case, the insurance analogue of CAPM

equation (1.1) is the equation

MV[Xi | S] = E[Xi] + βi

(
mv[S]− E[S]

)
, (2.5)

which holds for all pairs (Xi, S) for which MV[Xi | S] and mv[S] are well-defined and

finite: no specific distribution on the risks has been imposed.

Despite the latter optimistic message, we still rely on the existence of finite second

moments of the underlying random risks, but this is only due to our choice of the modified-

variance risk measure and the capital allocation rule. To accommodate heavier-tailed

risks, we therefore wish to depart from the above risk measure and the capital allocation

rule, and for this we put forward a research program whose main idea hinges on the

following modification of CAPM equation (1.1):

(1) replace the two risk-free rates of return rf by the corresponding averages E[Xi] and

E[S], frequently called net premiums in the actuarial literature;

(2) replace the expected market rate of return E[Rm] by a risk measure π[S] of the

aggregate risk S;

(3) replace the expected return E[Ri] on the asset i by a risk capital allocation rule

Π[Xi | S] due to the risk Xi;

(4) find, if possible, an appropriate proportionally coefficient βi – which we keep calling

‘beta’ to maintain consistency with the already accepted terminology in the CAPM

literature – that does not depend on any utility, weight, distortion, etc. ‘subjective’

function.
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Hence, in various scenarios of practical interest, in what follows we aim at deriving the

equation

Π[Xi | S] = E[Xi] + βi

(
π[S]− E[S]

)
, (2.6)

which we generally call the insurance pricing model (IPM) equation. An important clar-

ification is needed at this point in order to avoid a potential misunderstanding.

Namely, from the mathematical point of view, equation (2.6) always holds with βi =

βi(Π, π) defined by

βi(Π, π) =
Π[Xi | S]− E[Xi]

π[S]− E[S]
, (2.7)

whenever of course π[S] is positively loaded, that is π[S] > E[S]. The ratio of loadings

βi(Π, π) may, in general, depend on ‘subjective’ functions (e.g., utility, weight, distortion,

etc.) that define the risk capital allocation rule Π[Xi | S] and the risk measure π[S]. But

we say that equation (2.6) is the IPM equation only when βi(Π, π) does not depend on

these functions. Hence, our proposed IPM hinges on the fact that under certain but quite

general conditions, ratio (2.7) is independent of any subjective function, and it is only in

this case that we call ratio (2.7) ‘beta.’

In what follows, we discuss several versions of the IPM equation: the weighted insurance

pricing model (WIPM) equation in Section 3, and the Gini-type weighted insurance pricing

model (G-WIPM) equation in Section 4.

3. Weighted insurance pricing model

The weighted risk measure (Furman and Zitikis, 2008a, 2009), which is very general

and allows us to accommodate virtually every risk irrespective of its tail-heaviness as long

as we appropriately choose a weight function w : (−∞,∞) → [0,∞), is defined by

πw[S] =
E[Sw(S)]

E[w(S)]
. (3.1)

The weight function w is usually assumed, or chosen, to be non-decreasing, which ensures,

for example, non-negative loading of the risk measure. The corresponding weighted risk

capital allocation rule is (Furman and Zitikis, 2008b)

Πw[Xi | S] =
E[Xiw(S)]

E[w(S)]
. (3.2)

For example, by choosing the weight functions w : [0,∞) → [0,∞) given by

w(s) = sλ,

w(s) = eλs,

w(s) = 1− e−λs,

w(s) = 1{s > λ},
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where λ > 0 is a parameter, we reduce πw[S] to the size-biased, Esscher’s, Kamps’s, and

excess-of-loss risk measures, and we in turn reduce Πw[Xi | S] to the corresponding risk

capital allocation rules. A few other examples will follow later in this paper, but next we

show how the IPM equation (which we call WIPM) arises in the case of the weighted risk

measure and the corresponding capital allocation rule.

Using simple algebra and following the same route as in the modified-variance case, we

obtain the equations

Πw[Xi | S]− E[Xi] =
E[Xiw(S)]

E[w(S)]
− E[Xi]

=
Cov[Xi, w(S)]

E[w(S)]

=
Cov[Xi, w(S)]

Cov[S,w(S)]

Cov[S,w(S)]

E[w(S)]

=
Cov[Xi, w(S)]

Cov[S,w(S)]

E[Sw(S)]− E[S]E[w(S)]

E[w(S)]

= βi,w

(
πw[S]− E[S]

)
, (3.3)

where the ratio of loadings βi,w (we refrain from calling it ‘beta’ because it may, in general,

depend on the ‘subjective’ weight function w) is given by the equation

βi,w =
Cov[Xi, w(S)]

Cov[S,w(S)]
. (3.4)

When, however, βi,w does not depend on w, that is, βi,w = βi for some βi, the above

considerations give rise to the equation (cf. Furman and Zitikis, 2010)

Πw[Xi | S] = E[Xi] + βi

(
πw[S]− E[S]

)
, (3.5)

which we call the WIPM equation, and which is our proposed insurance analogue of

CAPM equation (1.1). Note that when w(s) = s, equation (3.5) reduces to equation

(2.5), but this fact does not imply that βi in equation (3.5) is the same as in equation

(2.4), as we shall see in a moment. We next show the validity of WIPM equation (3.5) in

two special cases.

Case 1: linear regression. Assume that the regression function

ri(s) = E[Xi | S = s] (3.6)

is linear, that is,

ri(s) = a+ bs (3.7)
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for some constants a and b, called the intercept and the slope, respectively. Then

βi,w =
Cov[Xi, w(S)]

Cov[S,w(S)]

=
Cov[ri(S), w(S)]

Cov[S,w(S)]

=
Cov[a+ bS, w(S)]

Cov[S,w(S)]

= b
Cov[S,w(S)]

Cov[S,w(S)]
= b. (3.8)

Hence, the ratio of loadings βi,w is equal to the slope b, which is of course free of the

weight function w and can thus be called ‘beta.’ In turn, WIPM equation (3.5) becomes

Πw[Xi | S] = E[Xi] + b
(
πw[S]− E[S]

)
. (3.9)

The regression function is linear in a number of popular multivariate risk models. We

refer to Furman and Zitikis (2010), Su (2016), Su and Furman (2017), Furman and Zitikis

(2016a,b) for examples, details, and further references. In particular, in these works we

find expressions of the slope b in terms of distribution parameters, which can in turn be

estimated using various techniques already available in the literature, such as the maxi-

mum likelihood method, the method of (trimmed) moments, and so on (e.g., Brazauskas

et al., 2009; Kleefeld and Brazauskas, 2012; and references therein). We may also seek

non-parametric estimators of b, which can be found in standard books on regression.

Case 2: linear regression and non-negative risks. Having mentioned non-negative risks,

which are abundant in insurance and are called losses (e.g., Klugman et al., 2008), we

now look at the case of non-negative risks Xi. Let the aggregate risk be the sum S =

X1 + X2 + · · · + Xd. Due to the obvious equations
∑

i ri(0) = E[S | S = 0] = 0 and

the non-negativity of all the summands ri(0), we have ri(0) = 0. This fact and linearity

assumption (3.7) imply that the intercept of the regression line vanishes, that is, a = 0,

and we thus in turn obtain the equation

b =
E[Xi]

E[S]
(3.10)

because E[Xi] = E[ri(S)] = bE[S]. Consequently, WIPM equation (3.5) becomes

Πw[Xi | S] = E[Xi] +
E[Xi]

E[S]

(
πw[S]− E[S]

)
=

E[Xi]

E[S]
πw[S]. (3.11)

Note that the ‘beta’ b given by equation (3.10) requires the existence of only the first

moments of the risks Xi and S. This is in sharp contrast with the covariance-based betas

that we encountered earlier in this paper.
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4. Gini-type weighted insurance pricing model

There are many risk measures and risk capital allocation rules that are not covered in

our previous discussion of πw[S] and Πw[Xi | S]. The reason is that in a number of cases

the weight function w acts not on the aggregate risk severity S but on its rank F (S),

where F is the cumulative distribution function (cdf) of S. Hence, we next turn πw[S]

and Πw[Xi | S] into what we call the Gini-type weighted risk measure

πw,Gini[S] =
E[Sw(F (S))]

E[w(F (S))]
(4.1)

and the corresponding Gini-type risk capital allocation rule

Πw,Gini[Xi | S] =
E[Xiw(F (S))]

E[w(F (S))]
. (4.2)

To illustrate them, we use the weight functions w : [0, 1] → [0,∞) given by

w(t) = p(1− t)p−1,

w(t) = g′(1− t),

w(t) = ept,

w(t) = 1{t > p},

where p > 0 is a parameter, and g : [0, 1] → [0, 1] is a ‘distortion’ function (e.g., g(t) = tp;

Wang, 1995, 1996). The above examples of the weight function w give rise to, respectively,

the proportional hazards, distortion, Aumann-Shapley, and conditional tail expectation

risk measures, as well as to the corresponding risk capital allocation rules. In addition,

the weight function

w(t) = w0(t)1{t > p}

with some ‘underlying’ weight function w0 : [0, 1] → [0,∞) leads to what we call the Gini-

type conditional-tail weighted risk measure and the corresponding risk capital allocation

rule (Furman and Zitikis, 2016a,b). For more extensive mathematical details on this topic,

we refer to Furman et al (2017).

To derive the corresponding pricing model, we follow equations (3.3) with w(F (S))

instead of w(S) and have

Πw,Gini[Xi | S] = E[Xi] + βi,w,Gini

(
πw,Gini[S]− E[S]

)
, (4.3)

where the ratio of loadings is

βi,w,Gini =
Cov[Xi, w(F (S))]

Cov[S,w(F (S))]
. (4.4)
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When the ratio of loadings βi,w,Gini does not depend on w, in which case we denote it by

βi,Gini, we arrive at the equation

Πw,Gini[Xi | S] = E[Xi] + βi,Gini

(
πw,Gini[S]− E[S]

)
(4.5)

that we call the G-WIPM equation. A remark on βi,w,Gini follows next, after which we

discuss two cases when βi,w,Gini does not depend on w.

Interestingly, the ratio of covariances on the right-hand side of equation (4.4) has al-

ready appeared in the literature. Namely, when w(t) = t, the ratio is known as the Gini

correlation coefficient and is usually denoted by Γ[Xi, S]. Its origins can be traced back

to the work of C. Gini a hundred years ago. The ratio of covariances under the weight

function w(t) = p(1− t)p−1 is usually denoted by Γp[Xi, S] and called the extended Gini

correlation coefficient. It appeared and was thoroughly investigated several decades ago

in the works of S. Yitzhaki and E. Schechtman, and we refer to the recent monograph

by Yitzhaki and Schechtman (2013) for details and references on the topic. In our CAS

technical report (Furman and Zitikis, 2016a), we discuss the weighted Gini-type correla-

tion coefficient in the same form as presented on the right-hand side of equation (4.4).

We next discuss two cases when βi,w,Gini does not depend on w.

Case 1: linear regression. A sufficient condition for the G-WIPM equation to hold is the

linearity of the regression function ri(s), that is, when equation (3.7) holds. Indeed, in

this case we can follow equations (3.8) with w(F (S)) instead of w(S) and obtain that

βi,w,Gini is equal to the slope b of the regression line, which is of course independent of w

and can thus be called ‘beta.’ In this case, analogously to WIPM equation (3.9), we have

the following G-WIPM equation

Πw,Gini[Xi | S] = E[Xi] + b
(
πw,Gini[S]− E[S]

)
. (4.6)

Case 2: linear regression and non-negative risks. When in addition to linearity of the

regression function we also deal with non-negative risks, the G-WIPM equation turns

into

Πw,Gini[Xi | S] = E[Xi] +
E[Xi]

E[S]

(
πw,Gini[S]− E[S]

)
=

E[Xi]

E[S]
πw,Gini[S], (4.7)

which is an analogue of WIPM equation (3.11).
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5. On the independence of loading ratios of w

In our explorations above, we have encountered three ratios of loadings: the most

general βi(Π, π) in equation (2.7), the weighted ratio βi,w in equation (3.4), and the Gini-

type weighted ratio βi,w,Gini in equation (4.4). As in the classical CAPM, neither of these

ratios we want to depend on any ‘subjective’ function, such as the weight function w.

A parametric route for checking whether this is true or not has transpired in our

considerations above. Namely, given data, we can start with a goodness-of-fit technique

and choose an appropriate parametric distribution for (Xi, S). Then, mathematically, we

would derive an expression for the regression function ri(s) and see whether it is linear or

not (e.g., Furman and Zitikis, 2016a,b; and references therein).

The parametric approach, however, is usually quite time and energy consuming, given

the mathematical complexities that naturally arise when calculating conditional densities

and, in turn, the regression function ri(s). Hence, one would – at least initially – prefer

a simpler non-parametric method (some kind of a ‘rule of thumb’) to determine whether

the loading ratio could, or could not, be free of any ‘subjective’ function. We offer several

thoughts on this issue that we think might be helpful in practice.

Ratio βi,w: a computational formula. Perhaps the simplest way that we can think of

for checking if the ratio βi,w might be independent of w would be to construct a non-

parametric estimate of the ratio and then plug into it several specific weight functions

w to see whether there would be any significant change in the obtained estimates. This

is definitely a heuristic approach, but we believe it is fast and practically useful. Hence,

suppose that we have n observed pairs (xi,k, sk), 1 ≤ k ≤ n. In this case,

βi,w =
E[Xiw(S)]− E[Xi]E[w(S)]

E[Sw(S)]− E[S]E[w(S)]
≈ β̂i,w, (5.1)

where

β̂i,w =

∑n
k=1 xi,kw(sk)− x̂i

∑n
k=1 w(sk)∑n

k=1 skw(sk)− ŝ
∑n

k=1w(sk)
(5.2)

with

x̂i =
1

n

n∑
k=1

xi,k and ŝ =
1

n

n∑
k=1

sk. (5.3)

The dependence of β̂i,w on w can now be explored numerically.

Ratio βi,w: an alternative computational formula. There might be situations when in

addition to realizations sk, 1 ≤ k ≤ n, there is also an estimate r̂i(s) of the regression

function ri(s). In this case,

βi,w =
Cov[ri(S), w(S)]

Cov[S,w(S)]
≈ β̃i,w, (5.4)
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where

β̃i,w =

∑n
k=1 r̂i(sk)w(sk)− x̃i

∑n
k=1w(sk)∑n

k=1 skw(sk)− ŝ
∑n

k=1w(sk)
(5.5)

with

x̃i =
1

n

n∑
k=1

r̂i(sk). (5.6)

Based on this, we can now explore the dependence of β̃i,w on w numerically.

Ratio βi,w,Gini: a computational formula. Suppose that we have observed pairs (xi,k, sk),

1 ≤ k ≤ n. Using them, we estimate E[Xi] and E[S] by x̂i (or x̃i) and ŝ, respectively,

whose definitions are given above. Then

βi,w,Gini =
E[Xiw(F (S))]− E[Xi]

∫ 1

0
w(u)du

E[Sw(F (S))]− E[S]
∫ 1

0
w(u)du

≈ β̂i,w,Gini (5.7)

with

β̂i,w,Gini =

∑n
k=1 x

∗
i,k,nw(k/n)−

(∑n
k=1 xi,k

) ∫ 1

0
w(u)du∑n

k=1 sk:nw(k/n)−
(∑n

k=1 sk
) ∫ 1

0
w(u)du

, (5.8)

where s1:n ≤ s2:n ≤ · · · ≤ sn:n are ordered sk, 1 ≤ k ≤ n, and where x∗
i,k,n, 1 ≤ k ≤ n, are

the first coordinates of the pairs (xi,k, sk), 1 ≤ k ≤ n, ordered according to the ascending

second coordinates. In the statistical literature, x∗
i,k,n, 1 ≤ k ≤ n, are called the induced

(by sk, 1 ≤ k ≤ n) order statistics of xi,k, 1 ≤ k ≤ n. We can now explore the dependence

of β̂i,w,Gini on w numerically.

Ratio βi,w,Gini: an alternative computational formula. We may also proceed by connecting

βi,w,Gini with so-called L-estimates. To somewhat simplify the presentation, we assume

that the cdf F of S is a continuous function, in which case F (S) is a uniform on [0, 1]

random variable. Using the classical notation F−1 for the inverse (i.e., quantile) function of

F , and with the regression function ri(s) defined by equation (3.6), we have the equations

βi,w,Gini =
E[Xiw(F (S))]− E[Xi]

∫ 1

0
w(u)du

E[Sw(F (S))]− E[S]
∫ 1

0
w(u)du

=
E[ri(S)w(F (S))]− E[Xi]

∫ 1

0
w(u)du

E[Sw(F (S))]− E[S]
∫ 1

0
w(u)du

=

∫ 1

0
ri(F

−1(u))w(u)du− E[Xi]
∫ 1

0
w(u)du∫ 1

0
F−1(u)w(u)du− E[S]

∫ 1

0
w(u)du

. (5.9)

Given observed pairs (xi,k, sk), 1 ≤ k ≤ n, we estimate E[Xi] by x̂i (or x̃i) and E[S] by ŝ.

The integral

Lw =

∫ 1

0

F−1(u)w(u)du
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in the denominator on the right-hand side of equation (5.9) is known in the statistical

literature as L-functional, and its estimate is

L̂w =
n∑

k=1

sk:n

∫ k/n

(k−1)/n

w(u)du,

where s1:n ≤ s2:n ≤ · · · ≤ sn:n are ordered sk, 1 ≤ k ≤ n. As to the integral

Lw(ri) =

∫ 1

0

ri(F
−1(u))w(u)du

in the numerator on the right-hand side of equation (5.9), we have the estimate

L̂w(r̂i) =
n∑

k=1

r̂i(sk:n)

∫ k/n

(k−1)/n

w(u)du,

where r̂i(s) is an estimate of the regression function ri(s). In summary, we have

β̃i,w,Gini =
L̂w(r̂i)− x̂i

∫ 1

0
w(u)du

L̂w − ŝ
∫ 1

0
w(u)du

. (5.10)

We may of course use x̃i given by equation (5.6) instead of x̂i on the right-hand side of

equation (5.10). We can now explore the dependence of β̃i,w,Gini on w numerically.
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