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Abstract 
We introduce an individual claims forecasting framework utilizing Bayesian 
mixture density networks that can be used for claims analytics tasks such as 
case reserving and triaging. The proposed approach enables incorporating 
claims information from both structured and unstructured data sources, 
producing multi-period cash flow forecasts, and generating different 
scenarios of future payment patterns. We implement and evaluate the 
modeling framework using publicly available data. 
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Introduction 
Individual claims reserving has garnered increasing interest in recent years. While 

the main benefit cited for performing reserving at the claim level over aggregate loss 

triangle approaches, such as chain ladder and Bornhuetter-Ferguson, is potential 

improvement in predictive accuracy, especially in environments with changing portfolio 

mix (Boumezoued and Devineau 2017), there are additional practical advantages to 

forecasting individual claim behavior. These include being able to obtain updated views 

of portfolio risk as claims are reported and optimize adjuster resource allocation based 

on severity predictions. Although the benefits of individual claims modeling are 

promising, it has not yet achieved widespread adoption in practice. One contributing 

reason for the lack of adoption, we hypothesize, is the absence of a modeling framework 

with features important to practitioners. We suggest that an effective loss reserves 

modeling framework should be able to: 
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• Incorporate arbitrary claims information as predictors, 

• Produce multi-period forecasts that are sufficiently stable over time, and 

• Sample different realizations of future payment patterns that encompass both 

process uncertainty and model risk. 

Companies are capturing increasingly diverse data, such as unstructured text from 

claims adjusters’ notes and photographs of damages, that can potentially be predictive. 

Timing of cash flows and being able to sample from different future states have both 

business decision making and regulatory applications. A desirable characteristic of the 

forecasts is that they are stable over time, as management is averse to volatility in loss 

reserves figures from one accounting period to the next. A subjective criterion not listed 

above, which may affect adoption of an approach, is that the models should be 

implementable without the need for extensive bespoke feature engineering or 

specification of complex assumptions for underlying stochastic processes. 

To the best of our knowledge, no existing loss reserving framework implements all of 

the above features. In this paper, we propose an extensible individual claims forecasting 

framework towards satisfying many of these criteria, utilizing ideas from Bayesian 

neural networks (BNN) (Neal 2012) and mixture density networks (MDN) (Bishop 1994). 

While we discuss these concepts in detail later in the paper, at a high level, 

• BNNs are non-linear supervised learning models that capture complex 

interactions among inputs, with prior distributions on model parameters; and 

• MDNs are mixture models for conditional densities, where the mixture model 

parameters are the outputs of the neural network. 

Concretely, our contributions are: 

• Development of an individual claims forecasting framework based on Bayesian 

Mixture Density Networks (BMDN). 

• Implementation of the proposed framework using publicly available claims-level 

data, which provides a baseline for future work to compare against. 
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Related Work 
Claims-level reserving is a fast-moving research area, and (Boumezoued and 

Devineau 2017) and (Taylor 2019) provide recent surveys. Many of the current works in 

the area utilize machine learning (ML) techniques. Wüthrich (Wüthrich 2018a) 

introduces using machine learning algorithms to incorporate diverse claims 

characteristics inputs. It demonstrates a simple model where regression trees are used to 

predict the number of payments, and it suggests extensions such as compound 

modeling to predict severity and bootstrap simulation to obtain prediction uncertainty. 

More recently, (Duval and Pigeon 2019; Lopez, Milhaud, and Thérond 2019; Baudry and 

Robert, n.d.) also utilize tree-based techniques for individual claims reserving. Another 

direction of research for the individual claims reserving problem are the generative 

approaches of, for example, (Antonio and Plat 2014; Pigeon, Antonio, and Denuit 2013, 

2014). In this latter category of methodologies, a set of distributional assumptions are 

posited for the different drivers of claims, such as time to the next payment and its 

amount. These distributions are fit to the data, then, with the obtained parameters, the 

modeler is able to perform simulations of future development paths by sampling from 

the fitted distributions. While this approach provides a natural way to obtain samples of 

future cash flow paths, the distributional assumptions may be too rigid in some cases. It 

is also difficult to incorporate individual claim characteristics; to differentiate among 

different characteristics, one would have to segment the claims and fit separate models 

to each group. 

In formulating our framework, we also draw inspiration from machine learning 

approaches to aggregate triangle data, including (Gabrielli, Richman, and Wüthrich 

2019; Gabrielli 2019), which embed a classical parametric loss reserving model into 

neural networks, and the DeepTriangle (Kuo 2019) framework, whose neural network 

architecture we adapt for individual claims data. 
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Preliminaries 
We begin with a description of the loss reserving problem then briefly discuss BNN 

and MDN, two ideas that we incorporate into our claims forecasting neural network. As 

neural networks have been utilized and discussed extensively in recent loss reserving 

literature (Gabrielli, Richman, and Wüthrich 2019; Gabrielli 2019; Kuo 2019; Wüthrich 

2018b; Gabrielli and V Wüthrich 2018), we defer discussion of neural network 

fundamentals to those works and the standard reference (Goodfellow, Bengio, and 

Courville 2016). To aid the practicing actuary in consuming this paper, we expand on 

certain concepts when we introduce the proposed neural network architecture in 4.4. 

We remark that in sections 3.2 and 3.3, we discuss Bayesian inference and mixture 

density networks, respectively, in general, and provide details on our specific choices of 

distributions later on in the paper. 

The Loss Reserving Problem 
Figure 1 shows a diagram of the development of a typical claim. We first point out 

that there can be a time difference, known as the reporting lag, between an accident’s 

occurrence and its reporting. The accidents which have been reported to the insurer, but 

not yet settled, are known as reported but not settled (RBNS) or, equivalently, incurred 

but not enough reported (IBNER) claims, while the accidents which have occurred but 

are yet unknown to the insurer are known as incurred but not reported (IBNR) claims. 

The reserving actuary is interested in estimating the ultimate loss amounts associated 

with accidents that have already occurred. As demonstrated in Figure 1, it is possible for 

a closed claim to re-open, and it is also possible for a claim to be closed without any cash 

flows. 

In this paper, we are concerned with RBNS/IBNER, but not IBNR, claims, due to 

limitations of available data, as for IBNR claims we do not have individual claim feature 

information available. Also, the claims we study encompass closed claims to allow for 

the possibility of claim re-opening. 
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Figure 1. Development of a claim 

 
Bayesian Inference on Neural Networks 

In this section, we briefly discuss Bayesian inference on neural networks, following 

the discourse in (Graves 2011) and (Blundell et al. 2015). 

Consider a neural network parameterized by weights 𝑤𝑤 that takes input 𝑥𝑥 and 

returns output 𝑦𝑦. We can view this general formulation as a probabilistic model 

𝑃𝑃(𝑦𝑦|𝑥𝑥,𝑤𝑤); as an example, in the case of linear regression where 𝑦𝑦 ∈ ℝ, mean squared loss 

is specified, and constant variance is assumed, 𝑃𝑃(𝑦𝑦|𝑥𝑥,𝑤𝑤) corresponds to a Gaussian 

distribution. 

Rather than treating 𝑤𝑤 as a fixed unknown parameter, we adapt a Bayesian 

perspective and treat 𝑤𝑤 as a random variable with some prior distribution 𝑃𝑃(𝑤𝑤). The 

task is then to compute the posterior distribution 𝑃𝑃(𝑤𝑤|𝑥𝑥,𝑦𝑦) given the training data. We 

can then calculate the posterior predictive distribution 𝑃𝑃(𝑦𝑦∗|𝑥𝑥∗) = 𝔼𝔼𝑃𝑃(𝑤𝑤|𝑥𝑥,𝑦𝑦)[𝑃𝑃(𝑦𝑦∗|𝑥𝑥∗,𝑤𝑤)], 

where 𝑥𝑥∗ is a new data point to be scored and 𝑌𝑌∗ the corresponding unknown response. 

However, determining 𝑃𝑃(𝑤𝑤|𝑥𝑥,𝑦𝑦) analytically is intractable, and convergence of Markov 

chain Monte Carlo (MCMC) to the actual posterior for nontrivial neural networks is too 

slow to be feasible. Variational inference provides a workaround to this problem by 

approximating the posterior with a more tractable distribution 𝑞𝑞(𝑤𝑤|𝜃𝜃), which is often 

chosen to come from the mean-field family, i.e., 𝑞𝑞(𝑧𝑧) = ∏ 𝑞𝑞𝑖𝑖 (𝑧𝑧𝑖𝑖), but can be more general 

(Blundell et al. 2015). We then formulate an optimization problem to find the parameters 

𝜃𝜃. Specifically, we minimize the Kullback-Leibler (KL) divergence from the true 
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posterior distribution 𝑃𝑃 to the approximate distribution 𝑞𝑞. KL divergence is defined in 

general for probability distributions 𝑃𝑃 to 𝑄𝑄 as 

𝐷𝐷𝐾𝐾𝐾𝐾(𝑄𝑄‖𝑃𝑃) = ∫ 𝑞𝑞(𝑥𝑥)log
𝑞𝑞(𝑥𝑥)
𝑝𝑝(𝑥𝑥)

𝑑𝑑𝑑𝑑.  (1) 

Our optimization problem can then be stated as 

𝜃𝜃∗ = argmin
𝜃𝜃
𝐷𝐷𝐾𝐾𝐾𝐾(𝑞𝑞(𝑤𝑤|𝜃𝜃)‖𝑃𝑃(𝑤𝑤|𝒟𝒟))  (2)

= argmin
𝜃𝜃
∫ 𝑞𝑞(𝑤𝑤|𝜃𝜃)log

𝑞𝑞(𝑤𝑤|𝜃𝜃)
𝑃𝑃(𝑤𝑤|𝒟𝒟)

𝑑𝑑𝑑𝑑  (3)

= argmin
𝜃𝜃
∫ 𝑞𝑞(𝑤𝑤|𝜃𝜃)log

𝑞𝑞(𝑤𝑤|𝜃𝜃)
𝑃𝑃(𝑤𝑤)𝑃𝑃(𝒟𝒟|𝑤𝑤)

𝑑𝑑𝑑𝑑  (4)

= argmin
𝜃𝜃
𝐷𝐷𝐾𝐾𝐾𝐾(𝑞𝑞(𝑤𝑤|𝜃𝜃)‖𝑃𝑃(𝑤𝑤)) − 𝔼𝔼𝑞𝑞(𝑤𝑤|𝜃𝜃)[log𝑃𝑃(𝒟𝒟|𝑤𝑤)]  (5)

 

where 𝒟𝒟 = (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)𝑖𝑖 is the training dataset. We remark that, in Equation (2), the 𝑃𝑃(𝒟𝒟) term 

resulting from applying Bayes’ theorem to 𝑃𝑃(𝑤𝑤|𝒟𝒟) disappears because it is irrelevant to 

the optimization. 

Equation (1) then gives us the optimization objective1 

ℱ(𝒟𝒟,𝜃𝜃) = 𝐷𝐷𝐾𝐾𝐾𝐾(𝑞𝑞(𝑤𝑤|𝜃𝜃)‖𝑃𝑃(𝑤𝑤)) − 𝔼𝔼𝑞𝑞(𝑤𝑤|𝜃𝜃)[log𝑃𝑃(𝒟𝒟|𝑤𝑤)]  (6) 

In practice, during training, where 𝒟𝒟 is randomly split into 𝑀𝑀 mini-batches 𝒟𝒟1, … ,𝒟𝒟𝑀𝑀, 

we compute ℱ(𝒟𝒟,𝜃𝜃) = ∑ ℱ𝑖𝑖𝑀𝑀
1 (𝒟𝒟𝑖𝑖 ,𝜃𝜃), where 

ℱ𝑖𝑖(𝒟𝒟𝑖𝑖 ,𝜃𝜃) =
|𝒟𝒟𝑖𝑖|
|𝒟𝒟|

𝐷𝐷𝐾𝐾𝐾𝐾(𝑞𝑞(𝑤𝑤|𝜃𝜃)‖𝑃𝑃(𝑤𝑤)) − 𝔼𝔼𝑞𝑞(𝑤𝑤|𝜃𝜃)[log𝑃𝑃(𝒟𝒟𝑖𝑖|𝑤𝑤)]  (7) 

which we approximate with 

ℱ𝑖𝑖(𝒟𝒟𝑖𝑖 ,𝜃𝜃) ≈�
1

|𝒟𝒟|

|𝒟𝒟𝑖𝑖|

𝑗𝑗=1

(log𝑞𝑞(𝑤𝑤(𝑗𝑗)|𝜃𝜃) − log𝑃𝑃(𝑤𝑤(𝑗𝑗))) − log𝑃𝑃(𝒟𝒟𝑖𝑖|𝑤𝑤(𝑗𝑗))  (8) 

 

1 We note that −ℱ(𝒟𝒟,𝜃𝜃) is often referred to as the evidence lower bound (ELBO) in the machine learning 
literature. 
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where the 𝑤𝑤(𝑗𝑗) are sampled independently from 𝑞𝑞(𝑤𝑤|𝜃𝜃). In other words, we sample 

from the weights distribution just once for each training sample. 

Mixture Density Networks 
In practical applications, the response variables we try to predict often have 

multimodal distributions and exhibit heteroscedastic errors. This is particularly relevant 

in forecasting claims cash flows since, in a given time period, there could be a large 

payment or little or no payment. An MDN allows the output to follow a mixture of 

arbitrary distributions and estimate each of its parameters with the neural network. 

Recall that a mixture distribution has a distribution function of the form 

𝐹𝐹(𝑧𝑧) = �𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑃𝑃𝑖𝑖(𝑧𝑧),  (9) 

where each 𝑤𝑤𝑖𝑖 ≥ 0, ∑𝑤𝑤𝑖𝑖 = 1, and 𝑛𝑛 is the number of component distributions 𝑃𝑃𝑖𝑖. Letting 

𝒫𝒫 denote the union of the sets of parameters for the distributions 𝑃𝑃1, … ,𝑃𝑃𝑛𝑛, the neural 

network must then output 𝑛𝑛 + |𝒫𝒫| values. The first 𝑛𝑛 values determine the categorical 

distribution of the mixing weights, and the |𝒫𝒫| outputs parameterize the component 

distributions. 

By obtaining distributions rather than single points as prediction outputs, we also 

gain a straightforward mechanism to quantify the uncertainty of individual cash flow 

forecasts. 

We emphasize now the difference between the uncertainty captured by specifying a 

distribution as the neural network’s output, as discussed here, and the uncertainty in the 

weight distribution, as discussed in Section 3.2. The former corresponds to the 

irreducible pure randomness, while the latter reflects uncertainty in parameter 

estimation. 
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Data and Model 
In this section, we describe the data used for our experiments and the proposed 

model. The dataset used and relevant code are available on GitHub2. The experiments 

are implemented using the R programming language (R Development Core Team 2011) 

and TensorFlow (Abadi et al. 2015). 

Data 
We utilize the individual claims history simulator of (Gabrielli and V Wüthrich 2018) 

to generate data for our experiments. For each claim, we have the following static 

information: line of business, labor sector of the injured, accident year, accident quarter, 

age of the injured, part of body injured, and the reporting year. In addition, we also have 

12 years of claim development information, in the form of cash flows and claims statuses 

(whether the claim is open or not). The generated claims history exhibit behaviors such 

as negative cash flows for recoveries and late reporting, which mimic realistic scenarios. 

Since we only have claims data and not policy level and exposure data, we study 

only reported claims. 

Experiment Setup 
We first simulate approximately 500,0003 claims using the simulator, which provides 

us with the full development history of these claims. The claims cover accident years 

1994 to 2005. Since we are concerned with reported claims, we remove claims with 

report date after 2005, which leaves us with N = 497,516 claims. In this paper, we assume 

that each claim is fully developed at development year 11 (note that in the dataset the 

first development year is denoted year 0). More formally, we can represent the dataset 

as the collection 

𝒟𝒟 = {(𝑋𝑋(𝑗𝑗), �𝐶𝐶𝑖𝑖
(𝑗𝑗))0≤𝑖𝑖≤11, �𝑆𝑆𝑖𝑖

(𝑗𝑗))0≤𝑖𝑖≤11� : 𝑗𝑗 ∈ 1, … ,𝑁𝑁� ,  (10) 

 

2 https://github.com/kasaai/bnn-claims 

3 The number of claims generated is stochastic; in our case, we draw 500,904 claims. 

https://github.com/kasaai/bnn-claims
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where 𝑋𝑋, (𝐶𝐶𝑖𝑖), and (𝑆𝑆𝑖𝑖) denote the static claim features, incremental cash flow sequences, 

and claim status sequences, respectively, and 𝑗𝑗 indexes the claims. 

To create the training and testing sets, we select year 2005 as the evaluation year 

cutoff. For the training set, any cash flow information available after 2005 is removed. In 

symbols, we have 

𝒟𝒟train = ��𝑋𝑋(𝑗𝑗), �𝐶𝐶𝑖𝑖
(𝑗𝑗)� , �𝑆𝑆𝑖𝑖

(𝑗𝑗)�� : 𝑖𝑖 + AY(𝑗𝑗) ≤ 2005, 𝑗𝑗 ∈ 1, … ,𝑁𝑁� ,  (11) 

where AY(𝑗𝑗) denotes the accident year associated with claim 𝑗𝑗. 

For each claim in the training set, we create a training sample for each time period 

after development year 0. The response variable consists of cash flow information 

available as of the end of each time period until the evaluation year cutoff, and 

predictors are derived from information available before the time period. For a claim 𝑗𝑗, 

we have the following input-output pairs: 

���𝑋𝑋(𝑗𝑗), �𝐶𝐶0
(𝑗𝑗), … ,𝐶𝐶𝑖𝑖

(𝑗𝑗)� , �𝑆𝑆0
(𝑗𝑗), … , 𝑆𝑆𝑖𝑖

(𝑗𝑗)�� , �𝐶𝐶𝑖𝑖+1
(𝑗𝑗) , … ,𝐶𝐶

𝑘𝑘(𝑗𝑗)
(𝑗𝑗) �� : 𝑖𝑖 = 0, … , 𝑘𝑘(𝑗𝑗) − 1� ,  (12) 

where 𝑘𝑘(𝑗𝑗) denotes the latest development year for which data is available for claim 𝑗𝑗 in 

the training set. As an example, if a claim has an accident year of 2000, five training 

samples are created. The first training sample has cash flows from 2001 to 2005 for the 

response and one cash flow value from 2000 for the predictor, while the last training 

sample has only the cash flow in year 2005 for the response and cash flows from 2000 to 

2004 for the predictor. 

We note here that we do not predict future claim statuses. As we will discuss in 

Section 4.4.4, our output distributions, which contain point masses at zero, can 

accommodate behaviors of both open and closed claims. 
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The training samples in Equation (12) undergo additional transformations before they 

are used for training our model. We discuss these transformations in detail in the next 

section. 

Feature Engineering 
We exhibit the predictors used and associated transformations in Table 1. In the raw 

simulated data, each time period has a cash flow amount along with a claim open status 

indicator associated with it. We take the cash flow value and derive two variables from 

it: the paid loss and the recovery, corresponding to the positive part and negative part of 

the cash flow, respectively. In other words, for each claim and for each time step, at most 

one of paid loss and recovery can be nonzero. For predictors, both the paid losses and 

recoveries are centered and scaled with respect to all instances of their values in the 

training set. The response cash flow values are not normalized. 

Claim status indicator, which is a scalar value of 0 or 1, is one-hot encoded (i.e., 

represented using dummy variables); for each training sample, a claim status value is 

available for each time step. 

Development year is defined as the number of years since the accident occurred. It is 

then scaled to [0,1]. 

The static claim characteristic variables include age, line of business, occupation of 

the claimant, and the injured body part. Of these, age is numeric while the others are 

categorical. We center and scale the age variable and integer-index the others, which are 

fed into embedding layers (Guo and Berkhahn 2016), discussed in the next section. 

As noted in the previous section, the response variable and the sequence predictors 

can have different lengths (in terms of time steps) from one sample to the next. To 

facilitate computation, we pre-pad and post-pad the sequences with a predetermined 

masking value (we use 99999) so that all sequences have a fixed length of 11. 
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Table 1. Predictor variable and transformations 
Variable Type Preprocessing 

Paid loss history Numeric sequence Centered and scaled 

Recovery history Numeric sequence Centered and scaled 

Claim status history Categorical sequence One-hot encoded 

Development year Integer Scaled to [0, 1] 

Age Numeric Centered and scaled 

Line of business Categorical Indexed 

Claim code (occupation) Categorical Indexed 

Injured part Categorical Indexed 

 
Claims Forecasting Model 

We utilize an encoder-decoder architecture with sequence output similar to the 

model proposed by (Kuo 2019). The architecture is illustrated in Figure 2. We first 

provide a brief overview of the architecture, then provide details on specific components 

later in the section. 

The output in our case is the future sequence of distributions of loss payments, and 

the input is the cash flow and claim status history along with static claim characteristics. 
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Figure 2. Claims forecasting model architecture. Note that the weights for the variational dense 
layers are shared across time steps. 

 

Static categorical variable inputs, such as labor sector of the injured, are indexed, then 

connected to embedding layers (Guo and Berkhahn 2016) and sequential data, including 

payments and claim statuses, are connected to long short-term memory (LSTM) layers 

(Hochreiter and Schmidhuber 1997). 

The encoded inputs are concatenated together, then repeated 11 times before being 

passed to a decoder LSTM layer which returns a sequence. The length of this output 

sequence is so chosen to match our requirement to forecast a maximum of 11 steps into 

the future. Each time step of this sequence is connected to two dense variational layers, 

each of which parameterizes an output distribution, corresponding to paid losses and 

recoveries, respectively. The weights of the dense variational layer (for paid loss and 

recovery) are each shared across the time steps. In other words, for each training sample, 
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we output two 11-dimensional random variables, each of which can be considered as a 

collection of 11 independent but non-identically distributed random variables. 

We use the same loss function for each output and weight them equally for model 

optimization. The loss function is the negative log-likelihood given the target data with 

an adjustment for variable output lengths which we discuss in detail in Section 4.4.5. 

In the remainder of this section, we discuss in more detail embedding layers, LSTM, 

our choices of the variational and distribution layers, the loss function, and model 

training. 

Embedding Layer 
An embedding layer maps each level of a categorical variable to a fixed-length vector 

in 𝑛𝑛-dimensional Euclidean space. The value of 𝑛𝑛 is a hyperparameter chosen by the 

modeler; in our case we select 𝑛𝑛 = 2 for all embedding layers, which means we map 

each factor level to a point in ℝ2. In contrast to data-preprocessing dimensionality 

techniques such as principal component analysis (PCA) or t-distributed stochastic 

neighbor embedding (t-SNE), the values of the embeddings are learned during training 

of the neural network. 

Long Short-Term Memory 
LSTM is a type of recurrent neural network (RNN) architecture that is appropriate for 

sequential data, such as natural language or time series (our use case). Empirically, 

LSTM is more apt at handling data with longer term dependencies than simple RNN 

(LeCun, Bengio, and Hinton 2015). In our model, for both of the sequence input 

encoders and the decoder, we utilize a single layer of LSTM with 3 hidden units. We 

found that these relatively small modules provided reasonable results but did not 

perform comprehensive tuning to test deeper and larger architectures. 

Dense Variational Layer 
We choose Gaussians for both the prior and surrogate posterior distributions over the 

weights of the dense layers. The prior distribution is constrained to have zero mean and 
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unit variance while for the surrogate posterior both the mean and variance are trainable. 

Symbolically, if we let 𝑤𝑤 denote the weights associated with each dense layer, we have 

𝑃𝑃(𝑤𝑤) = 𝒩𝒩(0, 𝐼𝐼) and  (13) 

𝑞𝑞(𝑤𝑤|𝜃𝜃) = 𝒩𝒩�𝜇𝜇(𝜃𝜃),𝜎𝜎(𝜃𝜃)�,  (14) 

where 𝜃𝜃 represents trainable parameters. The KL term associated with estimation, as 

described in Section 3.2, is added to the neural network loss during optimization. The 

dense layers each output four units to parameterize the output distributions which we 

discuss next. 

Output Distribution 
For each of the 11 time steps we forecast, we parameterize two distributions, one for 

paid losses and one for recoveries. Each of the distributions is chosen to be a mixture of 

a shifted log-normal distribution and a deterministic degenerate distribution localized at 

zero, representing cash flow and no cash flow, respectively. Denoting {𝑣𝑣1, … , 𝑣𝑣4} to be 

the output of the preceding dense variational layer, we have the following as the 

distribution function: 

𝐹𝐹(𝑦𝑦) = 𝑤𝑤1(𝑣𝑣1, 𝑣𝑣2)𝑃𝑃(𝑦𝑦; 𝑣𝑣3, (𝛼𝛼 + 𝜆𝜆𝜆𝜆(𝛽𝛽𝑣𝑣4))2) + 𝑤𝑤2(𝑣𝑣1, 𝑣𝑣2)𝐹𝐹0(𝑦𝑦).  (15) 

We now describe the components of Equation (15). First, 

𝑤𝑤𝑖𝑖 =
𝑒𝑒𝑣𝑣𝑖𝑖

𝑒𝑒𝑣𝑣1 + 𝑒𝑒𝑣𝑣2
 (𝑖𝑖 = 1,2)  (16) 

are the normalized mixing weights. 𝑃𝑃(𝑦𝑦; 𝜇𝜇,𝜎𝜎2) denotes the distribution function for a 

log-normal distribution with location and scale parameters 𝜇𝜇 and 𝜎𝜎, respectively, shifted 

to the left by 0.001 to accommodate zeros in the data. In other words, if 𝑌𝑌 ∼ 𝐿𝐿𝐿𝐿(𝜇𝜇,𝜎𝜎2), 

then 𝑌𝑌 − 0.001 ∼ 𝑃𝑃. This modification is necessary because we have zero cash flows in 
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the response sequences, and computing the likelihood becomes problematic since the 

support of the log-normal distribution does not contain zero.4 

𝐹𝐹0(𝑦𝑦) = �1, if 𝑦𝑦 ≥ 0
0, if 𝑦𝑦 < 0�  (17) 

is the distribution function for the deterministic distribution, and 𝜎𝜎 is the sigmoid 

function defined as 

𝜎𝜎(𝑡𝑡) =
1

1 + 𝑒𝑒−𝑡𝑡
.  (18) 

In Equation (15), the constants 𝛼𝛼,𝛽𝛽 > 0 are included for numerical stability and can 

be tuned as hyperparameters, although we set them to 0.001 and 0.01, respectively, for 

our experiments. The purpose of 𝜆𝜆 is also numerical stability, as the scale parameter of 

the log-normal distribution is hard to learn in practice, so we bound it above by a 

constant. In our experiments we fix it to be 0.7. 

The net loss prediction for each development year is then the difference of the paid 

loss and recovery amounts. We assume that the output distributions, conditional on 

their parameters, are independent across the time steps, which facilitates the derivation 

of the loss function in the next section. We remark that this is a weakness of our 

approach, since the independence assumption is not fulfilled in practice. 

Loss Function 
We calculate the log-likelihood loss for each output by computing the log probability 

of the true labels with respect to the output distributions. As mentioned in Section 4.3, 

the output sequences may contain masking values that need to be adjusted. Specifically, 

we marginalize out the components with the masking values. Formally, for a given 

training sample, let 𝑀𝑀 denote the masking constant, 𝑌𝑌 = (𝑌𝑌1, … ,𝑌𝑌11) denote a single 

 

4 As of the writing of this paper, TensorFlow Probability attempts to evaluate all terms in the likelihood of 
the mixture. 
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output sequence, 𝑌𝑌𝒯𝒯𝑀𝑀 = (𝑌𝑌𝑖𝑖:𝑌𝑌𝑖𝑖 = 𝑀𝑀), and, abusing notation, also let 𝒯𝒯𝑀𝑀 = {𝑖𝑖:𝑌𝑌𝑖𝑖 = 𝑀𝑀}. 

Then, 

𝑓𝑓𝑌𝑌\𝑌𝑌𝒯𝒯𝑀𝑀
(𝑌𝑌) = � 𝑓𝑓

𝑌𝑌𝒯𝒯𝑀𝑀

(𝑌𝑌)𝑑𝑑𝑌𝑌𝒯𝒯𝑀𝑀

= � 𝑓𝑓
𝑌𝑌𝒯𝒯𝑀𝑀

(𝑌𝑌\𝑌𝑌𝒯𝒯𝑀𝑀 ,𝑌𝑌𝒯𝒯𝑀𝑀)𝑑𝑑𝑌𝑌𝒯𝒯𝑀𝑀

= 𝑓𝑓𝑌𝑌\𝑌𝑌𝒯𝒯𝑀𝑀
(𝑌𝑌\𝑌𝑌𝒯𝒯𝑀𝑀)� 𝑓𝑓𝑌𝑌𝒯𝒯𝑀𝑀𝑌𝑌𝒯𝒯𝑀𝑀

(𝑌𝑌𝒯𝒯𝑀𝑀)𝑑𝑑𝑌𝑌𝒯𝒯𝑀𝑀 (by independence)

= 𝑓𝑓𝑌𝑌\𝑌𝑌𝒯𝒯𝑀𝑀
(𝑌𝑌\𝑌𝑌𝒯𝒯𝑀𝑀)

= �𝑓𝑓𝑌𝑌𝑖𝑖
𝑖𝑖∉𝒯𝒯𝑀𝑀

(𝑌𝑌𝑖𝑖) (by independence).

 

The adjusted log-likelihood for a single training sample then becomes 

logℒ(𝑌𝑌) = log𝑓𝑓𝑌𝑌\𝑌𝑌𝒯𝒯𝑀𝑀
(𝑌𝑌)

= log �𝑓𝑓𝑌𝑌𝑖𝑖
𝑖𝑖∉𝒯𝒯𝑀𝑀

(𝑌𝑌𝑖𝑖)

= � log
𝑇𝑇

𝑖𝑖=1

𝑓𝑓𝑌𝑌𝑖𝑖(𝑌𝑌𝑖𝑖),

 

where 𝑇𝑇 is min𝒯𝒯𝑀𝑀 − 1 if 𝒯𝒯𝑀𝑀 is nonempty and 11 otherwise. 

Hence, the log-likelihood associated with a training sample is the sum of the log 

probabilities of the non-masked elements. The negative log-likelihood, summed with the 

KL term associated with the variational layers, discussed in Section 3.2, comprise the 

total network loss for optimization. The contribution of a single training sample to the 

loss is then 

� log
𝑇𝑇

𝑖𝑖=1

𝑓𝑓𝑌𝑌𝑖𝑖(𝑌𝑌𝑖𝑖) +
1

|𝒟𝒟| �𝐷𝐷𝐾𝐾𝐾𝐾

2

𝑘𝑘=1

(𝑞𝑞𝑘𝑘(𝑤𝑤𝑘𝑘|𝜃𝜃𝑘𝑘)�𝑃𝑃𝑘𝑘(𝑤𝑤𝑘𝑘)�,  (19) 

where 𝑘𝑘 = 1,2 correspond to variational layers for parameterizing the paid loss and 

recovery distributions, respectively. 
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Training and Scoring 
We use a random subset of the training set consisting of 5% of the records as the 

validation set for determining early stopping and scheduling the learning rate. For 

optimizing the neural network, we use stochastic gradient descent with an initial 

learning rate of 0.01 and a minibatch size of 100,000, and we halve the learning rate 

when there is no improvement in the validation loss for five epochs. Training is stopped 

early when the validation loss does not improve for ten epochs; we cap the maximum 

number of epochs at 100. Here, an epoch refers to a complete iteration through our 

training dataset, and the minibatch size refers to how many training samples we 

randomly sample for each gradient descent step. 

To forecast an individual claim, we construct a scoring data point by using all data 

available to us as of the evaluation date cutoff. In other words, the last elements of the 

predictor cash flow sequences correspond to the actual value from the cutoff year. 

Hence, in the output sequence, the first element corresponds to the prediction of the 

cash flow distribution of the year after the cutoff. 

Recall that our model weights are a random variable, so each time we score a new 

data point, we are sampling from the distribution of model weights and expect to obtain 

different parameters for the distributions of cash flows. The output distributions 

themselves are also stochastic and can be sampled from. Following (Kendall and Gal 

2017), we refer to the former variability as epistemic uncertainty and the latter as aleatoric 

uncertainty. Epistemic uncertainty reflects uncertainty about our model which can be 

reduced given more training data, while aleatoric uncertainty reflects the irreducible 

noise in the observations. In actuarial science literature, these concepts are also known as 

parameter estimation uncertainty and process uncertainty, respectively (Wuthrich 2017). 

Generating a distribution of future paths of cash flows amounts to repeating the 

procedure of drawing a model from its distribution, calculating the output distribution 

parameters using the drawn model, then drawing a sample of cash flows from the 

distribution. Since we decompose the cash flows into paid losses and recoveries, we can 
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obtain net amounts by subtracting the generated recoveries from the generated paid 

losses. 

If we were only interested in point estimates, we can avoid sampling the output 

distributions and simply compute their means, since given the model weights we have 

closed form expressions for the distributions given by Equation (15). Note that we 

would still have to sample the model weights. 

Results and Discussion 
We evaluate our modeling framework by qualitatively inspecting samples paths 

generated for an individual claim and also comparing the aggregate estimate of unpaid 

claims with a chain ladder estimate. We note that, to the best of our knowledge, prior to 

the current paper, there is not a benchmark for individual claims forecasts. We also 

discuss the extensibility of our approach to accommodate company specific data 

elements and expert knowledge. 

Individual Claim Forecasts 
Figure 3 shows various posterior densities, obtained by sampling the model weights 

1,000 times, of parameters for the output distributions of a single claim. Our model 

assigns a higher probability of payment in the next year along with more variability 

around that probability. It can be seen that the expected probability of a payment 

decreases as we forecast further into the future. Given that a loss payment occurs, we see 

from the middle and bottom plots that both the expected value and the variability for 

both the mean and variance of the log-normal distributions increase with time. In other 

words, for this particular claim, loss payments become less likely as time goes on, but if 

they occur, they tend to be more severe and the model is less certain about the severity 

distribution. 
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Figure 3. Posterior distributions for a single claim at development year 4. (Top) Payment 
probability. (Middle) Mean of loss payment distribution. (Bottom) Log variance of payment 
distribution. 

 

Figure 4. 1,000 samples of cumulative cash flow paths for a single claim. The training data 
includes development year 4 and the predictions begin in development year 5. 

 

In Figure 4 we show plausible future developments of the claim. Note that one 

thousand samples are drawn, so the handful of scenarios that present large payments 

represents a small portion of the paths, which is consistent with the distributions of 

parameters we see above. 
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Aggregate estimates 
To compute a point estimate for the total unpaid losses, we score each claim once (i.e., 

sample from the weights distribution once) to obtain a distribution for each time step for 

paid losses and recoveries. We then compute the means of the paid loss and recovery 

distributions and take the differences to obtain the net cash flow amount. The final 

unpaid loss estimate is then the sum of all the net amounts up to and including 

development year 11. Since there is randomness in the neural network weight 

initialization, we instantiate and train the model 10 times, and take the average of the 

predicted future paid losses across the 10-model ensemble. In practice, one could 

distribute the prediction procedure over a computing cluster and draw more samples 

for an even more stable estimate. 

For the chain ladder development method benchmark, we aggregate the data into a 

report year triangle (to exclude IBNR), calculate ultimate losses using all-year weighted 

age-to-age factors, then subtract the already paid amounts to arrive at the unpaid 

estimate. The unpaid amounts from the two approaches are then compared to the actual 

unpaid amounts. The results are shown in Table 2. 

Model Forecast Error 

Actual 109,216,388 – 

Chain Ladder 108,040,572 −1.08% 

Ours (10-Model Ensemble) 102,502,710 −6.15% 

Table 2: Aggregate forecast results. 
 

While we are not improving on chain ladder estimates at the aggregate level for this 

particular simulated dataset, our approach is able to provide individual claims forecasts, 

which are interesting in their own right. 
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Extensibility 
One of the primary advantages of neural networks is their flexibility. Considering the 

architecture described in Section 4.4, we can include additional predictors by appending 

additional input layers. These inputs can be unstructured, and we can leverage 

appropriate techniques to process them before combining with the existing features. For 

example, we may utilize convolutional layers to transform image inputs and recurrent 

layers to transform audio or text inputs. 

The forms of the output distributions can also be customized. We choose a log-

normal mixture for our dataset, but depending on the specific book of business, one may 

want to specify a different distribution, such as a Gamma or a Gaussian. As we have 

done in constraining the scale parameter of the log-normal distribution, the modeler also 

has the ability to bound or fix specific parameters as situations call for them. 

Conclusion 
We have introduced a framework for individual claims forecasting that can be 

utilized in loss reserving. By leveraging Bayesian neural networks and stochastic output 

layers, our approach provides ways to learn uncertainty from the data. It is also able to 

produce cash flow estimates for multiple future time periods. Experiments confirm that 

the approach gives reasonable results and provides a viable candidate for future work 

on individual claims forecasting to benchmark against. 

There are a few potential avenues for enhancements and extensions, including larger 

scale simulations to evaluate the quality of uncertainty estimates, evaluating against 

new datasets, and relaxing simplifying assumptions, such as the independence of time 

steps to obtain more internally consistent forecasts. One main limitation of the proposed 

approach and experiments is that we focus on reported claims only. With access to 

policy level data, a particularly interesting direction of research would be to extend the 

approach to also estimate IBNR claims. 
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	Abstract
	We introduce an individual claims forecasting framework utilizing Bayesian mixture density networks that can be used for claims analytics tasks such as case reserving and triaging. The proposed approach enables incorporating claims information from both structured and unstructured data sources, producing multi-period cash flow forecasts, and generating different scenarios of future payment patterns. We implement and evaluate the modeling framework using publicly available data.
	Keywords
	Claims reserving, individual claims reserving, loss reserving
	Introduction
	Individual claims reserving has garnered increasing interest in recent years. While the main benefit cited for performing reserving at the claim level over aggregate loss triangle approaches, such as chain ladder and Bornhuetter-Ferguson, is potential improvement in predictive accuracy, especially in environments with changing portfolio mix (Boumezoued and Devineau 2017), there are additional practical advantages to forecasting individual claim behavior. These include being able to obtain updated views of portfolio risk as claims are reported and optimize adjuster resource allocation based on severity predictions. Although the benefits of individual claims modeling are promising, it has not yet achieved widespread adoption in practice. One contributing reason for the lack of adoption, we hypothesize, is the absence of a modeling framework with features important to practitioners. We suggest that an effective loss reserves modeling framework should be able to:
	• Incorporate arbitrary claims information as predictors,
	• Produce multi-period forecasts that are sufficiently stable over time, and
	• Sample different realizations of future payment patterns that encompass both process uncertainty and model risk.
	Companies are capturing increasingly diverse data, such as unstructured text from claims adjusters’ notes and photographs of damages, that can potentially be predictive. Timing of cash flows and being able to sample from different future states have both business decision making and regulatory applications. A desirable characteristic of the forecasts is that they are stable over time, as management is averse to volatility in loss reserves figures from one accounting period to the next. A subjective criterion not listed above, which may affect adoption of an approach, is that the models should be implementable without the need for extensive bespoke feature engineering or specification of complex assumptions for underlying stochastic processes.
	To the best of our knowledge, no existing loss reserving framework implements all of the above features. In this paper, we propose an extensible individual claims forecasting framework towards satisfying many of these criteria, utilizing ideas from Bayesian neural networks (BNN) (Neal 2012) and mixture density networks (MDN) (Bishop 1994). While we discuss these concepts in detail later in the paper, at a high level,
	• BNNs are non-linear supervised learning models that capture complex interactions among inputs, with prior distributions on model parameters; and
	• MDNs are mixture models for conditional densities, where the mixture model parameters are the outputs of the neural network.
	Concretely, our contributions are:
	• Development of an individual claims forecasting framework based on Bayesian Mixture Density Networks (BMDN).
	• Implementation of the proposed framework using publicly available claims-level data, which provides a baseline for future work to compare against.
	Related Work
	Claims-level reserving is a fast-moving research area, and (Boumezoued and Devineau 2017) and (Taylor 2019) provide recent surveys. Many of the current works in the area utilize machine learning (ML) techniques. Wüthrich (Wüthrich 2018a) introduces using machine learning algorithms to incorporate diverse claims characteristics inputs. It demonstrates a simple model where regression trees are used to predict the number of payments, and it suggests extensions such as compound modeling to predict severity and bootstrap simulation to obtain prediction uncertainty. More recently, (Duval and Pigeon 2019; Lopez, Milhaud, and Thérond 2019; Baudry and Robert, n.d.) also utilize tree-based techniques for individual claims reserving. Another direction of research for the individual claims reserving problem are the generative approaches of, for example, (Antonio and Plat 2014; Pigeon, Antonio, and Denuit 2013, 2014). In this latter category of methodologies, a set of distributional assumptions are posited for the different drivers of claims, such as time to the next payment and its amount. These distributions are fit to the data, then, with the obtained parameters, the modeler is able to perform simulations of future development paths by sampling from the fitted distributions. While this approach provides a natural way to obtain samples of future cash flow paths, the distributional assumptions may be too rigid in some cases. It is also difficult to incorporate individual claim characteristics; to differentiate among different characteristics, one would have to segment the claims and fit separate models to each group.
	In formulating our framework, we also draw inspiration from machine learning approaches to aggregate triangle data, including (Gabrielli, Richman, and Wüthrich 2019; Gabrielli 2019), which embed a classical parametric loss reserving model into neural networks, and the DeepTriangle (Kuo 2019) framework, whose neural network architecture we adapt for individual claims data.
	Preliminaries
	We begin with a description of the loss reserving problem then briefly discuss BNN and MDN, two ideas that we incorporate into our claims forecasting neural network. As neural networks have been utilized and discussed extensively in recent loss reserving literature (Gabrielli, Richman, and Wüthrich 2019; Gabrielli 2019; Kuo 2019; Wüthrich 2018b; Gabrielli and V Wüthrich 2018), we defer discussion of neural network fundamentals to those works and the standard reference (Goodfellow, Bengio, and Courville 2016). To aid the practicing actuary in consuming this paper, we expand on certain concepts when we introduce the proposed neural network architecture in 4.4.
	We remark that in sections 3.2 and 3.3, we discuss Bayesian inference and mixture density networks, respectively, in general, and provide details on our specific choices of distributions later on in the paper.
	The Loss Reserving Problem

	Figure 1 shows a diagram of the development of a typical claim. We first point out that there can be a time difference, known as the reporting lag, between an accident’s occurrence and its reporting. The accidents which have been reported to the insurer, but not yet settled, are known as reported but not settled (RBNS) or, equivalently, incurred but not enough reported (IBNER) claims, while the accidents which have occurred but are yet unknown to the insurer are known as incurred but not reported (IBNR) claims. The reserving actuary is interested in estimating the ultimate loss amounts associated with accidents that have already occurred. As demonstrated in Figure 1, it is possible for a closed claim to re-open, and it is also possible for a claim to be closed without any cash flows.
	In this paper, we are concerned with RBNS/IBNER, but not IBNR, claims, due to limitations of available data, as for IBNR claims we do not have individual claim feature information available. Also, the claims we study encompass closed claims to allow for the possibility of claim re-opening.
	/
	Figure 1. Development of a claim
	Bayesian Inference on Neural Networks

	In this section, we briefly discuss Bayesian inference on neural networks, following the discourse in (Graves 2011) and (Blundell et al. 2015).
	Consider a neural network parameterized by weights 𝑤 that takes input 𝑥 and returns output 𝑦. We can view this general formulation as a probabilistic model 𝑃(𝑦|𝑥,𝑤); as an example, in the case of linear regression where 𝑦∈ℝ, mean squared loss is specified, and constant variance is assumed, 𝑃(𝑦|𝑥,𝑤) corresponds to a Gaussian distribution.
	Rather than treating 𝑤 as a fixed unknown parameter, we adapt a Bayesian perspective and treat 𝑤 as a random variable with some prior distribution 𝑃(𝑤). The task is then to compute the posterior distribution 𝑃(𝑤|𝑥,𝑦) given the training data. We can then calculate the posterior predictive distribution 𝑃(𝑦∗|𝑥∗)=𝔼𝑃(𝑤|𝑥,𝑦)[𝑃(𝑦∗|𝑥∗,𝑤)], where 𝑥∗ is a new data point to be scored and 𝑌∗ the corresponding unknown response. However, determining 𝑃(𝑤|𝑥,𝑦) analytically is intractable, and convergence of Markov chain Monte Carlo (MCMC) to the actual posterior for nontrivial neural networks is too slow to be feasible. Variational inference provides a workaround to this problem by approximating the posterior with a more tractable distribution 𝑞(𝑤|𝜃), which is often chosen to come from the mean-field family, i.e., 𝑞(𝑧)=𝑖​𝑞(𝑧𝑖), but can be more general (Blundell et al. 2015). We then formulate an optimization problem to find the parameters 𝜃. Specifically, we minimize the Kullback-Leibler (KL) divergence from the true posterior distribution 𝑃 to the approximate distribution 𝑞. KL divergence is defined in general for probability distributions 𝑃 to 𝑄 as
	𝐷𝐾𝐿(𝑄‖𝑃)=∫𝑞(𝑥)log𝑞(𝑥)𝑝(𝑥)𝑑𝑥.  (1)
	Our optimization problem can then be stated as
	𝜃∗=argmin𝜃𝐷𝐾𝐿(𝑞(𝑤|𝜃)‖𝑃(𝑤|𝒟))  (2)=argmin𝜃∫𝑞(𝑤|𝜃)log𝑞(𝑤|𝜃)𝑃(𝑤|𝒟)𝑑𝑤  (3)=argmin𝜃∫𝑞(𝑤|𝜃)log𝑞(𝑤|𝜃)𝑃(𝑤)𝑃(𝒟|𝑤)𝑑𝑤  (4)=argmin𝜃𝐷𝐾𝐿(𝑞(𝑤|𝜃)‖𝑃(𝑤))−𝔼𝑞(𝑤|𝜃)[log𝑃(𝒟|𝑤)]  (5)
	where 𝒟=(𝑥𝑖,𝑦𝑖)𝑖 is the training dataset. We remark that, in Equation (2), the 𝑃(𝒟) term resulting from applying Bayes’ theorem to 𝑃(𝑤|𝒟) disappears because it is irrelevant to the optimization.
	Equation (1) then gives us the optimization objective
	ℱ(𝒟,𝜃)=𝐷𝐾𝐿(𝑞(𝑤|𝜃)‖𝑃(𝑤))−𝔼𝑞(𝑤|𝜃)[log𝑃(𝒟|𝑤)]  (6)
	In practice, during training, where 𝒟 is randomly split into 𝑀 mini-batches 𝒟1,…,𝒟𝑀, we compute ℱ(𝒟,𝜃)=1𝑀ℱ𝑖(𝒟𝑖,𝜃), where
	ℱ𝑖(𝒟𝑖,𝜃)=|𝒟𝑖||𝒟|𝐷𝐾𝐿(𝑞(𝑤|𝜃)‖𝑃(𝑤))−𝔼𝑞(𝑤|𝜃)[log𝑃(𝒟𝑖|𝑤)]  (7)
	which we approximate with
	ℱ𝑖(𝒟𝑖,𝜃)≈𝑗=1|𝒟𝑖|1|𝒟|(log𝑞(𝑤(𝑗)|𝜃)−log𝑃(𝑤(𝑗)))−log𝑃(𝒟𝑖|𝑤(𝑗))  (8)
	where the 𝑤(𝑗) are sampled independently from 𝑞(𝑤|𝜃). In other words, we sample from the weights distribution just once for each training sample.
	Mixture Density Networks

	In practical applications, the response variables we try to predict often have multimodal distributions and exhibit heteroscedastic errors. This is particularly relevant in forecasting claims cash flows since, in a given time period, there could be a large payment or little or no payment. An MDN allows the output to follow a mixture of arbitrary distributions and estimate each of its parameters with the neural network. Recall that a mixture distribution has a distribution function of the form
	𝐹𝑧=𝑖=1𝑛𝑤𝑖𝑃𝑖𝑧,  (9)
	where each 𝑤𝑖≥0, ∑𝑤𝑖=1, and 𝑛 is the number of component distributions 𝑃𝑖. Letting 𝒫 denote the union of the sets of parameters for the distributions 𝑃1,…,𝑃𝑛, the neural network must then output 𝑛+|𝒫| values. The first 𝑛 values determine the categorical distribution of the mixing weights, and the |𝒫| outputs parameterize the component distributions.
	By obtaining distributions rather than single points as prediction outputs, we also gain a straightforward mechanism to quantify the uncertainty of individual cash flow forecasts.
	We emphasize now the difference between the uncertainty captured by specifying a distribution as the neural network’s output, as discussed here, and the uncertainty in the weight distribution, as discussed in Section 3.2. The former corresponds to the irreducible pure randomness, while the latter reflects uncertainty in parameter estimation.
	Data and Model
	In this section, we describe the data used for our experiments and the proposed model. The dataset used and relevant code are available on GitHub. The experiments are implemented using the R programming language (R Development Core Team 2011) and TensorFlow (Abadi et al. 2015).
	Data

	We utilize the individual claims history simulator of (Gabrielli and V Wüthrich 2018) to generate data for our experiments. For each claim, we have the following static information: line of business, labor sector of the injured, accident year, accident quarter, age of the injured, part of body injured, and the reporting year. In addition, we also have 12 years of claim development information, in the form of cash flows and claims statuses (whether the claim is open or not). The generated claims history exhibit behaviors such as negative cash flows for recoveries and late reporting, which mimic realistic scenarios.
	Since we only have claims data and not policy level and exposure data, we study only reported claims.
	Experiment Setup

	We first simulate approximately 500,000 claims using the simulator, which provides us with the full development history of these claims. The claims cover accident years 1994 to 2005. Since we are concerned with reported claims, we remove claims with report date after 2005, which leaves us with N = 497,516 claims. In this paper, we assume that each claim is fully developed at development year 11 (note that in the dataset the first development year is denoted year 0). More formally, we can represent the dataset as the collection
	𝒟={(𝑋𝑗,𝐶𝑖𝑗)0≤𝑖≤11,𝑆𝑖𝑗)0≤𝑖≤11:𝑗∈1,…,𝑁,  (10)
	where 𝑋, (𝐶𝑖), and (𝑆𝑖) denote the static claim features, incremental cash flow sequences, and claim status sequences, respectively, and 𝑗 indexes the claims.
	To create the training and testing sets, we select year 2005 as the evaluation year cutoff. For the training set, any cash flow information available after 2005 is removed. In symbols, we have
	𝒟train=𝑋𝑗,𝐶𝑖𝑗,𝑆𝑖𝑗:𝑖+AY𝑗≤2005,𝑗∈1,…,𝑁,  (11)
	where AY(𝑗) denotes the accident year associated with claim 𝑗.
	For each claim in the training set, we create a training sample for each time period after development year 0. The response variable consists of cash flow information available as of the end of each time period until the evaluation year cutoff, and predictors are derived from information available before the time period. For a claim 𝑗, we have the following input-output pairs:
	𝑋𝑗,𝐶0𝑗,…,𝐶𝑖𝑗,𝑆0𝑗,…,𝑆𝑖𝑗,𝐶𝑖+1𝑗,…,𝐶𝑘𝑗𝑗:𝑖=0,…,𝑘𝑗−1,  (12)
	where 𝑘(𝑗) denotes the latest development year for which data is available for claim 𝑗 in the training set. As an example, if a claim has an accident year of 2000, five training samples are created. The first training sample has cash flows from 2001 to 2005 for the response and one cash flow value from 2000 for the predictor, while the last training sample has only the cash flow in year 2005 for the response and cash flows from 2000 to 2004 for the predictor.
	We note here that we do not predict future claim statuses. As we will discuss in Section 4.4.4, our output distributions, which contain point masses at zero, can accommodate behaviors of both open and closed claims.
	The training samples in Equation (12) undergo additional transformations before they are used for training our model. We discuss these transformations in detail in the next section.
	Feature Engineering

	We exhibit the predictors used and associated transformations in Table 1. In the raw simulated data, each time period has a cash flow amount along with a claim open status indicator associated with it. We take the cash flow value and derive two variables from it: the paid loss and the recovery, corresponding to the positive part and negative part of the cash flow, respectively. In other words, for each claim and for each time step, at most one of paid loss and recovery can be nonzero. For predictors, both the paid losses and recoveries are centered and scaled with respect to all instances of their values in the training set. The response cash flow values are not normalized.
	Claim status indicator, which is a scalar value of 0 or 1, is one-hot encoded (i.e., represented using dummy variables); for each training sample, a claim status value is available for each time step.
	Development year is defined as the number of years since the accident occurred. It is then scaled to [0,1].
	The static claim characteristic variables include age, line of business, occupation of the claimant, and the injured body part. Of these, age is numeric while the others are categorical. We center and scale the age variable and integer-index the others, which are fed into embedding layers (Guo and Berkhahn 2016), discussed in the next section.
	As noted in the previous section, the response variable and the sequence predictors can have different lengths (in terms of time steps) from one sample to the next. To facilitate computation, we pre-pad and post-pad the sequences with a predetermined masking value (we use 99999) so that all sequences have a fixed length of 11.
	Table 1. Predictor variable and transformations

	Variable
	Type
	Preprocessing
	Paid loss history
	Numeric sequence
	Centered and scaled
	Recovery history
	Numeric sequence
	Centered and scaled
	Claim status history
	Categorical sequence
	One-hot encoded
	Development year
	Integer
	Scaled to [0, 1]
	Age
	Numeric
	Centered and scaled
	Line of business
	Categorical
	Indexed
	Claim code (occupation)
	Categorical
	Indexed
	Injured part
	Categorical
	Indexed
	Claims Forecasting Model

	We utilize an encoder-decoder architecture with sequence output similar to the model proposed by (Kuo 2019). The architecture is illustrated in Figure 2. We first provide a brief overview of the architecture, then provide details on specific components later in the section.
	The output in our case is the future sequence of distributions of loss payments, and the input is the cash flow and claim status history along with static claim characteristics.
	/
	Figure 2. Claims forecasting model architecture. Note that the weights for the variational dense layers are shared across time steps.

	Static categorical variable inputs, such as labor sector of the injured, are indexed, then connected to embedding layers (Guo and Berkhahn 2016) and sequential data, including payments and claim statuses, are connected to long short-term memory (LSTM) layers (Hochreiter and Schmidhuber 1997).
	The encoded inputs are concatenated together, then repeated 11 times before being passed to a decoder LSTM layer which returns a sequence. The length of this output sequence is so chosen to match our requirement to forecast a maximum of 11 steps into the future. Each time step of this sequence is connected to two dense variational layers, each of which parameterizes an output distribution, corresponding to paid losses and recoveries, respectively. The weights of the dense variational layer (for paid loss and recovery) are each shared across the time steps. In other words, for each training sample, we output two 11-dimensional random variables, each of which can be considered as a collection of 11 independent but non-identically distributed random variables.
	We use the same loss function for each output and weight them equally for model optimization. The loss function is the negative log-likelihood given the target data with an adjustment for variable output lengths which we discuss in detail in Section 4.4.5.
	In the remainder of this section, we discuss in more detail embedding layers, LSTM, our choices of the variational and distribution layers, the loss function, and model training.
	Embedding Layer

	An embedding layer maps each level of a categorical variable to a fixed-length vector in 𝑛-dimensional Euclidean space. The value of 𝑛 is a hyperparameter chosen by the modeler; in our case we select 𝑛=2 for all embedding layers, which means we map each factor level to a point in ℝ2. In contrast to data-preprocessing dimensionality techniques such as principal component analysis (PCA) or t-distributed stochastic neighbor embedding (t-SNE), the values of the embeddings are learned during training of the neural network.
	Long Short-Term Memory

	LSTM is a type of recurrent neural network (RNN) architecture that is appropriate for sequential data, such as natural language or time series (our use case). Empirically, LSTM is more apt at handling data with longer term dependencies than simple RNN (LeCun, Bengio, and Hinton 2015). In our model, for both of the sequence input encoders and the decoder, we utilize a single layer of LSTM with 3 hidden units. We found that these relatively small modules provided reasonable results but did not perform comprehensive tuning to test deeper and larger architectures.
	Dense Variational Layer

	We choose Gaussians for both the prior and surrogate posterior distributions over the weights of the dense layers. The prior distribution is constrained to have zero mean and unit variance while for the surrogate posterior both the mean and variance are trainable. Symbolically, if we let 𝑤 denote the weights associated with each dense layer, we have
	𝑃(𝑤)=𝒩(0,𝐼) and  (13)
	𝑞𝑤𝜃=𝒩𝜇𝜃,𝜎𝜃,  (14)
	where 𝜃 represents trainable parameters. The KL term associated with estimation, as described in Section 3.2, is added to the neural network loss during optimization. The dense layers each output four units to parameterize the output distributions which we discuss next.
	Output Distribution

	For each of the 11 time steps we forecast, we parameterize two distributions, one for paid losses and one for recoveries. Each of the distributions is chosen to be a mixture of a shifted log-normal distribution and a deterministic degenerate distribution localized at zero, representing cash flow and no cash flow, respectively. Denoting {𝑣1,…,𝑣4} to be the output of the preceding dense variational layer, we have the following as the distribution function:
	𝐹(𝑦)=𝑤1(𝑣1,𝑣2)𝑃(𝑦;𝑣3,𝛼+𝜆𝜎𝛽𝑣4)2+𝑤2𝑣1,𝑣2𝐹0𝑦.  (15)
	We now describe the components of Equation (15). First,
	𝑤𝑖=𝑒𝑣𝑖𝑒𝑣1+𝑒𝑣2 (𝑖=1,2)  (16)
	are the normalized mixing weights. 𝑃(𝑦;𝜇,𝜎2) denotes the distribution function for a log-normal distribution with location and scale parameters 𝜇 and 𝜎, respectively, shifted to the left by 0.001 to accommodate zeros in the data. In other words, if 𝑌∼𝐿𝑁(𝜇,𝜎2), then 𝑌−0.001∼𝑃. This modification is necessary because we have zero cash flows in the response sequences, and computing the likelihood becomes problematic since the support of the log-normal distribution does not contain zero.
	𝐹0(𝑦)=1,if 𝑦≥00,if 𝑦<0  (17)
	is the distribution function for the deterministic distribution, and 𝜎 is the sigmoid function defined as
	𝜎𝑡=11+𝑒−𝑡.  (18)
	In Equation (15), the constants 𝛼,𝛽>0 are included for numerical stability and can be tuned as hyperparameters, although we set them to 0.001 and 0.01, respectively, for our experiments. The purpose of 𝜆 is also numerical stability, as the scale parameter of the log-normal distribution is hard to learn in practice, so we bound it above by a constant. In our experiments we fix it to be 0.7.
	The net loss prediction for each development year is then the difference of the paid loss and recovery amounts. We assume that the output distributions, conditional on their parameters, are independent across the time steps, which facilitates the derivation of the loss function in the next section. We remark that this is a weakness of our approach, since the independence assumption is not fulfilled in practice.
	Loss Function

	We calculate the log-likelihood loss for each output by computing the log probability of the true labels with respect to the output distributions. As mentioned in Section 4.3, the output sequences may contain masking values that need to be adjusted. Specifically, we marginalize out the components with the masking values. Formally, for a given training sample, let 𝑀 denote the masking constant, 𝑌=(𝑌1,…,𝑌11) denote a single output sequence, 𝑌𝒯𝑀=(𝑌𝑖:𝑌𝑖=𝑀), and, abusing notation, also let 𝒯𝑀={𝑖:𝑌𝑖=𝑀}. Then,
	𝑓𝑌\𝑌𝒯𝑀(𝑌)=𝑌𝒯𝑀​𝑓(𝑌)𝑑𝑌𝒯𝑀=𝑌𝒯𝑀​𝑓(𝑌\𝑌𝒯𝑀,𝑌𝒯𝑀)𝑑𝑌𝒯𝑀=𝑓𝑌\𝑌𝒯𝑀(𝑌\𝑌𝒯𝑀)𝑌𝒯𝑀​𝑓𝑌𝒯𝑀(𝑌𝒯𝑀)𝑑𝑌𝒯𝑀 (by independence)=𝑓𝑌\𝑌𝒯𝑀(𝑌\𝑌𝒯𝑀)=𝑖∉𝒯𝑀​𝑓𝑌𝑖(𝑌𝑖) (by independence).
	The adjusted log-likelihood for a single training sample then becomes
	logℒ(𝑌)=log𝑓𝑌\𝑌𝒯𝑀(𝑌)=log𝑖∉𝒯𝑀​𝑓𝑌𝑖(𝑌𝑖)=𝑖=1𝑇log𝑓𝑌𝑖(𝑌𝑖),
	where 𝑇 is min𝒯𝑀−1 if 𝒯𝑀 is nonempty and 11 otherwise.
	Hence, the log-likelihood associated with a training sample is the sum of the log probabilities of the non-masked elements. The negative log-likelihood, summed with the KL term associated with the variational layers, discussed in Section 3.2, comprise the total network loss for optimization. The contribution of a single training sample to the loss is then
	𝑖=1𝑇log𝑓𝑌𝑖(𝑌𝑖)+1𝒟𝑘=12𝐷𝐾𝐿(𝑞𝑘𝑤𝑘𝜃𝑘𝑃𝑘𝑤𝑘,  (19)
	where 𝑘=1,2 correspond to variational layers for parameterizing the paid loss and recovery distributions, respectively.
	Training and Scoring

	We use a random subset of the training set consisting of 5% of the records as the validation set for determining early stopping and scheduling the learning rate. For optimizing the neural network, we use stochastic gradient descent with an initial learning rate of 0.01 and a minibatch size of 100,000, and we halve the learning rate when there is no improvement in the validation loss for five epochs. Training is stopped early when the validation loss does not improve for ten epochs; we cap the maximum number of epochs at 100. Here, an epoch refers to a complete iteration through our training dataset, and the minibatch size refers to how many training samples we randomly sample for each gradient descent step.
	To forecast an individual claim, we construct a scoring data point by using all data available to us as of the evaluation date cutoff. In other words, the last elements of the predictor cash flow sequences correspond to the actual value from the cutoff year. Hence, in the output sequence, the first element corresponds to the prediction of the cash flow distribution of the year after the cutoff.
	Recall that our model weights are a random variable, so each time we score a new data point, we are sampling from the distribution of model weights and expect to obtain different parameters for the distributions of cash flows. The output distributions themselves are also stochastic and can be sampled from. Following (Kendall and Gal 2017), we refer to the former variability as epistemic uncertainty and the latter as aleatoric uncertainty. Epistemic uncertainty reflects uncertainty about our model which can be reduced given more training data, while aleatoric uncertainty reflects the irreducible noise in the observations. In actuarial science literature, these concepts are also known as parameter estimation uncertainty and process uncertainty, respectively (Wuthrich 2017).
	Generating a distribution of future paths of cash flows amounts to repeating the procedure of drawing a model from its distribution, calculating the output distribution parameters using the drawn model, then drawing a sample of cash flows from the distribution. Since we decompose the cash flows into paid losses and recoveries, we can obtain net amounts by subtracting the generated recoveries from the generated paid losses.
	If we were only interested in point estimates, we can avoid sampling the output distributions and simply compute their means, since given the model weights we have closed form expressions for the distributions given by Equation (15). Note that we would still have to sample the model weights.
	Results and Discussion
	We evaluate our modeling framework by qualitatively inspecting samples paths generated for an individual claim and also comparing the aggregate estimate of unpaid claims with a chain ladder estimate. We note that, to the best of our knowledge, prior to the current paper, there is not a benchmark for individual claims forecasts. We also discuss the extensibility of our approach to accommodate company specific data elements and expert knowledge.
	Individual Claim Forecasts

	Figure 3 shows various posterior densities, obtained by sampling the model weights 1,000 times, of parameters for the output distributions of a single claim. Our model assigns a higher probability of payment in the next year along with more variability around that probability. It can be seen that the expected probability of a payment decreases as we forecast further into the future. Given that a loss payment occurs, we see from the middle and bottom plots that both the expected value and the variability for both the mean and variance of the log-normal distributions increase with time. In other words, for this particular claim, loss payments become less likely as time goes on, but if they occur, they tend to be more severe and the model is less certain about the severity distribution.
	/
	Figure 3. Posterior distributions for a single claim at development year 4. (Top) Payment probability. (Middle) Mean of loss payment distribution. (Bottom) Log variance of payment distribution.

	/
	Figure 4. 1,000 samples of cumulative cash flow paths for a single claim. The training data includes development year 4 and the predictions begin in development year 5.

	In Figure 4 we show plausible future developments of the claim. Note that one thousand samples are drawn, so the handful of scenarios that present large payments represents a small portion of the paths, which is consistent with the distributions of parameters we see above.
	Aggregate estimates

	To compute a point estimate for the total unpaid losses, we score each claim once (i.e., sample from the weights distribution once) to obtain a distribution for each time step for paid losses and recoveries. We then compute the means of the paid loss and recovery distributions and take the differences to obtain the net cash flow amount. The final unpaid loss estimate is then the sum of all the net amounts up to and including development year 11. Since there is randomness in the neural network weight initialization, we instantiate and train the model 10 times, and take the average of the predicted future paid losses across the 10-model ensemble. In practice, one could distribute the prediction procedure over a computing cluster and draw more samples for an even more stable estimate.
	For the chain ladder development method benchmark, we aggregate the data into a report year triangle (to exclude IBNR), calculate ultimate losses using all-year weighted age-to-age factors, then subtract the already paid amounts to arrive at the unpaid estimate. The unpaid amounts from the two approaches are then compared to the actual unpaid amounts. The results are shown in Table 2.
	Model
	Forecast
	Error
	Actual
	109,216,388
	–
	Chain Ladder
	108,040,572
	−1.08%
	Ours (10-Model Ensemble)
	102,502,710
	−6.15%
	Table 2: Aggregate forecast results.

	While we are not improving on chain ladder estimates at the aggregate level for this particular simulated dataset, our approach is able to provide individual claims forecasts, which are interesting in their own right.
	Extensibility

	One of the primary advantages of neural networks is their flexibility. Considering the architecture described in Section 4.4, we can include additional predictors by appending additional input layers. These inputs can be unstructured, and we can leverage appropriate techniques to process them before combining with the existing features. For example, we may utilize convolutional layers to transform image inputs and recurrent layers to transform audio or text inputs.
	The forms of the output distributions can also be customized. We choose a log-normal mixture for our dataset, but depending on the specific book of business, one may want to specify a different distribution, such as a Gamma or a Gaussian. As we have done in constraining the scale parameter of the log-normal distribution, the modeler also has the ability to bound or fix specific parameters as situations call for them.
	Conclusion
	We have introduced a framework for individual claims forecasting that can be utilized in loss reserving. By leveraging Bayesian neural networks and stochastic output layers, our approach provides ways to learn uncertainty from the data. It is also able to produce cash flow estimates for multiple future time periods. Experiments confirm that the approach gives reasonable results and provides a viable candidate for future work on individual claims forecasting to benchmark against.
	There are a few potential avenues for enhancements and extensions, including larger scale simulations to evaluate the quality of uncertainty estimates, evaluating against new datasets, and relaxing simplifying assumptions, such as the independence of time steps to obtain more internally consistent forecasts. One main limitation of the proposed approach and experiments is that we focus on reported claims only. With access to policy level data, a particularly interesting direction of research would be to extend the approach to also estimate IBNR claims.
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