
CASUALTY ACTUARIAL SOCIETY

CAS RESEARCH PAPERS

Individual Claims Forecasting with
Bayesian Mixture Density Networks
Kevin Kuo

© 2020. Casualty Actuarial Society

Casualty Actuarial Society Research Paper 1

Individual Claims Forecasting with
Bayesian Mixture Density Networks

Kevin Kuo

February 2020

Abstract
We introduce an individual claims forecasting framework utilizing Bayesian
mixture density networks that can be used for claims analytics tasks such as
case reserving and triaging. The proposed approach enables incorporating
claims information from both structured and unstructured data sources,
producing multi-period cash flow forecasts, and generating different
scenarios of future payment patterns. We implement and evaluate the
modeling framework using publicly available data.

Keywords
Claims reserving, individual claims reserving, loss reserving

Introduction
Individual claims reserving has garnered increasing interest in recent years. While

the main benefit cited for performing reserving at the claim level over aggregate loss

triangle approaches, such as chain ladder and Bornhuetter-Ferguson, is potential

improvement in predictive accuracy, especially in environments with changing portfolio

mix (Boumezoued and Devineau 2017), there are additional practical advantages to

forecasting individual claim behavior. These include being able to obtain updated views

of portfolio risk as claims are reported and optimize adjuster resource allocation based

on severity predictions. Although the benefits of individual claims modeling are

promising, it has not yet achieved widespread adoption in practice. One contributing

reason for the lack of adoption, we hypothesize, is the absence of a modeling framework

with features important to practitioners. We suggest that an effective loss reserves

modeling framework should be able to:

Individual Claims Forecasting with Bayesian Mixture Density Networks

Casualty Actuarial Society Research Paper 2

• Incorporate arbitrary claims information as predictors,

• Produce multi-period forecasts that are sufficiently stable over time, and

• Sample different realizations of future payment patterns that encompass both

process uncertainty and model risk.

Companies are capturing increasingly diverse data, such as unstructured text from

claims adjusters’ notes and photographs of damages, that can potentially be predictive.

Timing of cash flows and being able to sample from different future states have both

business decision making and regulatory applications. A desirable characteristic of the

forecasts is that they are stable over time, as management is averse to volatility in loss

reserves figures from one accounting period to the next. A subjective criterion not listed

above, which may affect adoption of an approach, is that the models should be

implementable without the need for extensive bespoke feature engineering or

specification of complex assumptions for underlying stochastic processes.

To the best of our knowledge, no existing loss reserving framework implements all of

the above features. In this paper, we propose an extensible individual claims forecasting

framework towards satisfying many of these criteria, utilizing ideas from Bayesian

neural networks (BNN) (Neal 2012) and mixture density networks (MDN) (Bishop 1994).

While we discuss these concepts in detail later in the paper, at a high level,

• BNNs are non-linear supervised learning models that capture complex

interactions among inputs, with prior distributions on model parameters; and

• MDNs are mixture models for conditional densities, where the mixture model

parameters are the outputs of the neural network.

Concretely, our contributions are:

• Development of an individual claims forecasting framework based on Bayesian

Mixture Density Networks (BMDN).

• Implementation of the proposed framework using publicly available claims-level

data, which provides a baseline for future work to compare against.

Individual Claims Forecasting with Bayesian Mixture Density Networks

Casualty Actuarial Society Research Paper 3

Related Work
Claims-level reserving is a fast-moving research area, and (Boumezoued and

Devineau 2017) and (Taylor 2019) provide recent surveys. Many of the current works in

the area utilize machine learning (ML) techniques. Wüthrich (Wüthrich 2018a)

introduces using machine learning algorithms to incorporate diverse claims

characteristics inputs. It demonstrates a simple model where regression trees are used to

predict the number of payments, and it suggests extensions such as compound

modeling to predict severity and bootstrap simulation to obtain prediction uncertainty.

More recently, (Duval and Pigeon 2019; Lopez, Milhaud, and Thérond 2019; Baudry and

Robert, n.d.) also utilize tree-based techniques for individual claims reserving. Another

direction of research for the individual claims reserving problem are the generative

approaches of, for example, (Antonio and Plat 2014; Pigeon, Antonio, and Denuit 2013,

2014). In this latter category of methodologies, a set of distributional assumptions are

posited for the different drivers of claims, such as time to the next payment and its

amount. These distributions are fit to the data, then, with the obtained parameters, the

modeler is able to perform simulations of future development paths by sampling from

the fitted distributions. While this approach provides a natural way to obtain samples of

future cash flow paths, the distributional assumptions may be too rigid in some cases. It

is also difficult to incorporate individual claim characteristics; to differentiate among

different characteristics, one would have to segment the claims and fit separate models

to each group.

In formulating our framework, we also draw inspiration from machine learning

approaches to aggregate triangle data, including (Gabrielli, Richman, and Wüthrich

2019; Gabrielli 2019), which embed a classical parametric loss reserving model into

neural networks, and the DeepTriangle (Kuo 2019) framework, whose neural network

architecture we adapt for individual claims data.

Individual Claims Forecasting with Bayesian Mixture Density Networks

Casualty Actuarial Society Research Paper 4

Preliminaries
We begin with a description of the loss reserving problem then briefly discuss BNN

and MDN, two ideas that we incorporate into our claims forecasting neural network. As

neural networks have been utilized and discussed extensively in recent loss reserving

literature (Gabrielli, Richman, and Wüthrich 2019; Gabrielli 2019; Kuo 2019; Wüthrich

2018b; Gabrielli and V Wüthrich 2018), we defer discussion of neural network

fundamentals to those works and the standard reference (Goodfellow, Bengio, and

Courville 2016). To aid the practicing actuary in consuming this paper, we expand on

certain concepts when we introduce the proposed neural network architecture in 4.4.

We remark that in sections 3.2 and 3.3, we discuss Bayesian inference and mixture

density networks, respectively, in general, and provide details on our specific choices of

distributions later on in the paper.

The Loss Reserving Problem
Figure 1 shows a diagram of the development of a typical claim. We first point out

that there can be a time difference, known as the reporting lag, between an accident’s

occurrence and its reporting. The accidents which have been reported to the insurer, but

not yet settled, are known as reported but not settled (RBNS) or, equivalently, incurred

but not enough reported (IBNER) claims, while the accidents which have occurred but

are yet unknown to the insurer are known as incurred but not reported (IBNR) claims.

The reserving actuary is interested in estimating the ultimate loss amounts associated

with accidents that have already occurred. As demonstrated in Figure 1, it is possible for

a closed claim to re-open, and it is also possible for a claim to be closed without any cash

flows.

In this paper, we are concerned with RBNS/IBNER, but not IBNR, claims, due to

limitations of available data, as for IBNR claims we do not have individual claim feature

information available. Also, the claims we study encompass closed claims to allow for

the possibility of claim re-opening.

Individual Claims Forecasting with Bayesian Mixture Density Networks

Casualty Actuarial Society Research Paper 5

Figure 1. Development of a claim

Bayesian Inference on Neural Networks

In this section, we briefly discuss Bayesian inference on neural networks, following

the discourse in (Graves 2011) and (Blundell et al. 2015).

Consider a neural network parameterized by weights 𝑤𝑤 that takes input 𝑥𝑥 and

returns output 𝑦𝑦. We can view this general formulation as a probabilistic model

𝑃𝑃(𝑦𝑦|𝑥𝑥,𝑤𝑤); as an example, in the case of linear regression where 𝑦𝑦 ∈ ℝ, mean squared loss

is specified, and constant variance is assumed, 𝑃𝑃(𝑦𝑦|𝑥𝑥,𝑤𝑤) corresponds to a Gaussian

distribution.

Rather than treating 𝑤𝑤 as a fixed unknown parameter, we adapt a Bayesian

perspective and treat 𝑤𝑤 as a random variable with some prior distribution 𝑃𝑃(𝑤𝑤). The

task is then to compute the posterior distribution 𝑃𝑃(𝑤𝑤|𝑥𝑥,𝑦𝑦) given the training data. We

can then calculate the posterior predictive distribution 𝑃𝑃(𝑦𝑦∗|𝑥𝑥∗) = 𝔼𝔼𝑃𝑃(𝑤𝑤|𝑥𝑥,𝑦𝑦)[𝑃𝑃(𝑦𝑦∗|𝑥𝑥∗,𝑤𝑤)],

where 𝑥𝑥∗ is a new data point to be scored and 𝑌𝑌∗ the corresponding unknown response.

However, determining 𝑃𝑃(𝑤𝑤|𝑥𝑥,𝑦𝑦) analytically is intractable, and convergence of Markov

chain Monte Carlo (MCMC) to the actual posterior for nontrivial neural networks is too

slow to be feasible. Variational inference provides a workaround to this problem by

approximating the posterior with a more tractable distribution 𝑞𝑞(𝑤𝑤|𝜃𝜃), which is often

chosen to come from the mean-field family, i.e., 𝑞𝑞(𝑧𝑧) = ∏ 𝑞𝑞𝑖𝑖 (𝑧𝑧𝑖𝑖), but can be more general

(Blundell et al. 2015). We then formulate an optimization problem to find the parameters

𝜃𝜃. Specifically, we minimize the Kullback-Leibler (KL) divergence from the true

Individual Claims Forecasting with Bayesian Mixture Density Networks

Casualty Actuarial Society Research Paper 6

posterior distribution 𝑃𝑃 to the approximate distribution 𝑞𝑞. KL divergence is defined in

general for probability distributions 𝑃𝑃 to 𝑄𝑄 as

𝐷𝐷𝐾𝐾𝐾𝐾(𝑄𝑄‖𝑃𝑃) = ∫ 𝑞𝑞(𝑥𝑥)log
𝑞𝑞(𝑥𝑥)
𝑝𝑝(𝑥𝑥)

𝑑𝑑𝑑𝑑.  (1)

Our optimization problem can then be stated as

𝜃𝜃∗ = argmin
𝜃𝜃
𝐷𝐷𝐾𝐾𝐾𝐾(𝑞𝑞(𝑤𝑤|𝜃𝜃)‖𝑃𝑃(𝑤𝑤|𝒟𝒟))  (2)

= argmin
𝜃𝜃
∫ 𝑞𝑞(𝑤𝑤|𝜃𝜃)log

𝑞𝑞(𝑤𝑤|𝜃𝜃)
𝑃𝑃(𝑤𝑤|𝒟𝒟)

𝑑𝑑𝑑𝑑  (3)

= argmin
𝜃𝜃
∫ 𝑞𝑞(𝑤𝑤|𝜃𝜃)log

𝑞𝑞(𝑤𝑤|𝜃𝜃)
𝑃𝑃(𝑤𝑤)𝑃𝑃(𝒟𝒟|𝑤𝑤)

𝑑𝑑𝑑𝑑  (4)

= argmin
𝜃𝜃
𝐷𝐷𝐾𝐾𝐾𝐾(𝑞𝑞(𝑤𝑤|𝜃𝜃)‖𝑃𝑃(𝑤𝑤)) − 𝔼𝔼𝑞𝑞(𝑤𝑤|𝜃𝜃)[log𝑃𝑃(𝒟𝒟|𝑤𝑤)]  (5)

where 𝒟𝒟 = (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)𝑖𝑖 is the training dataset. We remark that, in Equation (2), the 𝑃𝑃(𝒟𝒟) term

resulting from applying Bayes’ theorem to 𝑃𝑃(𝑤𝑤|𝒟𝒟) disappears because it is irrelevant to

the optimization.

Equation (1) then gives us the optimization objective1

ℱ(𝒟𝒟,𝜃𝜃) = 𝐷𝐷𝐾𝐾𝐾𝐾(𝑞𝑞(𝑤𝑤|𝜃𝜃)‖𝑃𝑃(𝑤𝑤)) − 𝔼𝔼𝑞𝑞(𝑤𝑤|𝜃𝜃)[log𝑃𝑃(𝒟𝒟|𝑤𝑤)]  (6)

In practice, during training, where 𝒟𝒟 is randomly split into 𝑀𝑀 mini-batches 𝒟𝒟1, … ,𝒟𝒟𝑀𝑀,

we compute ℱ(𝒟𝒟,𝜃𝜃) = ∑ ℱ𝑖𝑖𝑀𝑀
1 (𝒟𝒟𝑖𝑖 ,𝜃𝜃), where

ℱ𝑖𝑖(𝒟𝒟𝑖𝑖 ,𝜃𝜃) =
|𝒟𝒟𝑖𝑖|
|𝒟𝒟|

𝐷𝐷𝐾𝐾𝐾𝐾(𝑞𝑞(𝑤𝑤|𝜃𝜃)‖𝑃𝑃(𝑤𝑤)) − 𝔼𝔼𝑞𝑞(𝑤𝑤|𝜃𝜃)[log𝑃𝑃(𝒟𝒟𝑖𝑖|𝑤𝑤)]  (7)

which we approximate with

ℱ𝑖𝑖(𝒟𝒟𝑖𝑖 ,𝜃𝜃) ≈�
1

|𝒟𝒟|

|𝒟𝒟𝑖𝑖|

𝑗𝑗=1

(log𝑞𝑞(𝑤𝑤(𝑗𝑗)|𝜃𝜃) − log𝑃𝑃(𝑤𝑤(𝑗𝑗))) − log𝑃𝑃(𝒟𝒟𝑖𝑖|𝑤𝑤(𝑗𝑗))  (8)

1 We note that −ℱ(𝒟𝒟,𝜃𝜃) is often referred to as the evidence lower bound (ELBO) in the machine learning
literature.

Individual Claims Forecasting with Bayesian Mixture Density Networks

Casualty Actuarial Society Research Paper 7

where the 𝑤𝑤(𝑗𝑗) are sampled independently from 𝑞𝑞(𝑤𝑤|𝜃𝜃). In other words, we sample

from the weights distribution just once for each training sample.

Mixture Density Networks
In practical applications, the response variables we try to predict often have

multimodal distributions and exhibit heteroscedastic errors. This is particularly relevant

in forecasting claims cash flows since, in a given time period, there could be a large

payment or little or no payment. An MDN allows the output to follow a mixture of

arbitrary distributions and estimate each of its parameters with the neural network.

Recall that a mixture distribution has a distribution function of the form

𝐹𝐹(𝑧𝑧) = �𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑃𝑃𝑖𝑖(𝑧𝑧),  (9)

where each 𝑤𝑤𝑖𝑖 ≥ 0, ∑𝑤𝑤𝑖𝑖 = 1, and 𝑛𝑛 is the number of component distributions 𝑃𝑃𝑖𝑖. Letting

𝒫𝒫 denote the union of the sets of parameters for the distributions 𝑃𝑃1, … ,𝑃𝑃𝑛𝑛, the neural

network must then output 𝑛𝑛 + |𝒫𝒫| values. The first 𝑛𝑛 values determine the categorical

distribution of the mixing weights, and the |𝒫𝒫| outputs parameterize the component

distributions.

By obtaining distributions rather than single points as prediction outputs, we also

gain a straightforward mechanism to quantify the uncertainty of individual cash flow

forecasts.

We emphasize now the difference between the uncertainty captured by specifying a

distribution as the neural network’s output, as discussed here, and the uncertainty in the

weight distribution, as discussed in Section 3.2. The former corresponds to the

irreducible pure randomness, while the latter reflects uncertainty in parameter

estimation.

Individual Claims Forecasting with Bayesian Mixture Density Networks

Casualty Actuarial Society Research Paper 8

Data and Model
In this section, we describe the data used for our experiments and the proposed

model. The dataset used and relevant code are available on GitHub2. The experiments

are implemented using the R programming language (R Development Core Team 2011)

and TensorFlow (Abadi et al. 2015).

Data
We utilize the individual claims history simulator of (Gabrielli and V Wüthrich 2018)

to generate data for our experiments. For each claim, we have the following static

information: line of business, labor sector of the injured, accident year, accident quarter,

age of the injured, part of body injured, and the reporting year. In addition, we also have

12 years of claim development information, in the form of cash flows and claims statuses

(whether the claim is open or not). The generated claims history exhibit behaviors such

as negative cash flows for recoveries and late reporting, which mimic realistic scenarios.

Since we only have claims data and not policy level and exposure data, we study

only reported claims.

Experiment Setup
We first simulate approximately 500,0003 claims using the simulator, which provides

us with the full development history of these claims. The claims cover accident years

1994 to 2005. Since we are concerned with reported claims, we remove claims with

report date after 2005, which leaves us with N = 497,516 claims. In this paper, we assume

that each claim is fully developed at development year 11 (note that in the dataset the

first development year is denoted year 0). More formally, we can represent the dataset

as the collection

𝒟𝒟 = {(𝑋𝑋(𝑗𝑗), �𝐶𝐶𝑖𝑖
(𝑗𝑗))0≤𝑖𝑖≤11, �𝑆𝑆𝑖𝑖

(𝑗𝑗))0≤𝑖𝑖≤11� : 𝑗𝑗 ∈ 1, … ,𝑁𝑁� ,  (10)

2 https://github.com/kasaai/bnn-claims

3 The number of claims generated is stochastic; in our case, we draw 500,904 claims.

https://github.com/kasaai/bnn-claims

Individual Claims Forecasting with Bayesian Mixture Density Networks

Casualty Actuarial Society Research Paper 9

where 𝑋𝑋, (𝐶𝐶𝑖𝑖), and (𝑆𝑆𝑖𝑖) denote the static claim features, incremental cash flow sequences,

and claim status sequences, respectively, and 𝑗𝑗 indexes the claims.

To create the training and testing sets, we select year 2005 as the evaluation year

cutoff. For the training set, any cash flow information available after 2005 is removed. In

symbols, we have

𝒟𝒟train = ��𝑋𝑋(𝑗𝑗), �𝐶𝐶𝑖𝑖
(𝑗𝑗)� , �𝑆𝑆𝑖𝑖

(𝑗𝑗)�� : 𝑖𝑖 + AY(𝑗𝑗) ≤ 2005, 𝑗𝑗 ∈ 1, … ,𝑁𝑁� ,  (11)

where AY(𝑗𝑗) denotes the accident year associated with claim 𝑗𝑗.

For each claim in the training set, we create a training sample for each time period

after development year 0. The response variable consists of cash flow information

available as of the end of each time period until the evaluation year cutoff, and

predictors are derived from information available before the time period. For a claim 𝑗𝑗,

we have the following input-output pairs:

���𝑋𝑋(𝑗𝑗), �𝐶𝐶0
(𝑗𝑗), … ,𝐶𝐶𝑖𝑖

(𝑗𝑗)� , �𝑆𝑆0
(𝑗𝑗), … , 𝑆𝑆𝑖𝑖

(𝑗𝑗)�� , �𝐶𝐶𝑖𝑖+1
(𝑗𝑗) , … ,𝐶𝐶

𝑘𝑘(𝑗𝑗)
(𝑗𝑗) �� : 𝑖𝑖 = 0, … , 𝑘𝑘(𝑗𝑗) − 1� ,  (12)

where 𝑘𝑘(𝑗𝑗) denotes the latest development year for which data is available for claim 𝑗𝑗 in

the training set. As an example, if a claim has an accident year of 2000, five training

samples are created. The first training sample has cash flows from 2001 to 2005 for the

response and one cash flow value from 2000 for the predictor, while the last training

sample has only the cash flow in year 2005 for the response and cash flows from 2000 to

2004 for the predictor.

We note here that we do not predict future claim statuses. As we will discuss in

Section 4.4.4, our output distributions, which contain point masses at zero, can

accommodate behaviors of both open and closed claims.

Individual Claims Forecasting with Bayesian Mixture Density Networks

Casualty Actuarial Society Research Paper 10

The training samples in Equation (12) undergo additional transformations before they

are used for training our model. We discuss these transformations in detail in the next

section.

Feature Engineering
We exhibit the predictors used and associated transformations in Table 1. In the raw

simulated data, each time period has a cash flow amount along with a claim open status

indicator associated with it. We take the cash flow value and derive two variables from

it: the paid loss and the recovery, corresponding to the positive part and negative part of

the cash flow, respectively. In other words, for each claim and for each time step, at most

one of paid loss and recovery can be nonzero. For predictors, both the paid losses and

recoveries are centered and scaled with respect to all instances of their values in the

training set. The response cash flow values are not normalized.

Claim status indicator, which is a scalar value of 0 or 1, is one-hot encoded (i.e.,

represented using dummy variables); for each training sample, a claim status value is

available for each time step.

Development year is defined as the number of years since the accident occurred. It is

then scaled to [0,1].

The static claim characteristic variables include age, line of business, occupation of

the claimant, and the injured body part. Of these, age is numeric while the others are

categorical. We center and scale the age variable and integer-index the others, which are

fed into embedding layers (Guo and Berkhahn 2016), discussed in the next section.

As noted in the previous section, the response variable and the sequence predictors

can have different lengths (in terms of time steps) from one sample to the next. To

facilitate computation, we pre-pad and post-pad the sequences with a predetermined

masking value (we use 99999) so that all sequences have a fixed length of 11.

Individual Claims Forecasting with Bayesian Mixture Density Networks

Casualty Actuarial Society Research Paper 11

Table 1. Predictor variable and transformations
Variable Type Preprocessing

Paid loss history Numeric sequence Centered and scaled

Recovery history Numeric sequence Centered and scaled

Claim status history Categorical sequence One-hot encoded

Development year Integer Scaled to [0, 1]

Age Numeric Centered and scaled

Line of business Categorical Indexed

Claim code (occupation) Categorical Indexed

Injured part Categorical Indexed

Claims Forecasting Model

We utilize an encoder-decoder architecture with sequence output similar to the

model proposed by (Kuo 2019). The architecture is illustrated in Figure 2. We first

provide a brief overview of the architecture, then provide details on specific components

later in the section.

The output in our case is the future sequence of distributions of loss payments, and

the input is the cash flow and claim status history along with static claim characteristics.

Individual Claims Forecasting with Bayesian Mixture Density Networks

Casualty Actuarial Society Research Paper 12

Figure 2. Claims forecasting model architecture. Note that the weights for the variational dense
layers are shared across time steps.

Static categorical variable inputs, such as labor sector of the injured, are indexed, then

connected to embedding layers (Guo and Berkhahn 2016) and sequential data, including

payments and claim statuses, are connected to long short-term memory (LSTM) layers

(Hochreiter and Schmidhuber 1997).

The encoded inputs are concatenated together, then repeated 11 times before being

passed to a decoder LSTM layer which returns a sequence. The length of this output

sequence is so chosen to match our requirement to forecast a maximum of 11 steps into

the future. Each time step of this sequence is connected to two dense variational layers,

each of which parameterizes an output distribution, corresponding to paid losses and

recoveries, respectively. The weights of the dense variational layer (for paid loss and

recovery) are each shared across the time steps. In other words, for each training sample,

Individual Claims Forecasting with Bayesian Mixture Density Networks

Casualty Actuarial Society Research Paper 13

we output two 11-dimensional random variables, each of which can be considered as a

collection of 11 independent but non-identically distributed random variables.

We use the same loss function for each output and weight them equally for model

optimization. The loss function is the negative log-likelihood given the target data with

an adjustment for variable output lengths which we discuss in detail in Section 4.4.5.

In the remainder of this section, we discuss in more detail embedding layers, LSTM,

our choices of the variational and distribution layers, the loss function, and model

training.

Embedding Layer
An embedding layer maps each level of a categorical variable to a fixed-length vector

in 𝑛𝑛-dimensional Euclidean space. The value of 𝑛𝑛 is a hyperparameter chosen by the

modeler; in our case we select 𝑛𝑛 = 2 for all embedding layers, which means we map

each factor level to a point in ℝ2. In contrast to data-preprocessing dimensionality

techniques such as principal component analysis (PCA) or t-distributed stochastic

neighbor embedding (t-SNE), the values of the embeddings are learned during training

of the neural network.

Long Short-Term Memory
LSTM is a type of recurrent neural network (RNN) architecture that is appropriate for

sequential data, such as natural language or time series (our use case). Empirically,

LSTM is more apt at handling data with longer term dependencies than simple RNN

(LeCun, Bengio, and Hinton 2015). In our model, for both of the sequence input

encoders and the decoder, we utilize a single layer of LSTM with 3 hidden units. We

found that these relatively small modules provided reasonable results but did not

perform comprehensive tuning to test deeper and larger architectures.

Dense Variational Layer
We choose Gaussians for both the prior and surrogate posterior distributions over the

weights of the dense layers. The prior distribution is constrained to have zero mean and

Individual Claims Forecasting with Bayesian Mixture Density Networks

Casualty Actuarial Society Research Paper 14

unit variance while for the surrogate posterior both the mean and variance are trainable.

Symbolically, if we let 𝑤𝑤 denote the weights associated with each dense layer, we have

𝑃𝑃(𝑤𝑤) = 𝒩𝒩(0, 𝐼𝐼) and  (13)

𝑞𝑞(𝑤𝑤|𝜃𝜃) = 𝒩𝒩�𝜇𝜇(𝜃𝜃),𝜎𝜎(𝜃𝜃)�,  (14)

where 𝜃𝜃 represents trainable parameters. The KL term associated with estimation, as

described in Section 3.2, is added to the neural network loss during optimization. The

dense layers each output four units to parameterize the output distributions which we

discuss next.

Output Distribution
For each of the 11 time steps we forecast, we parameterize two distributions, one for

paid losses and one for recoveries. Each of the distributions is chosen to be a mixture of

a shifted log-normal distribution and a deterministic degenerate distribution localized at

zero, representing cash flow and no cash flow, respectively. Denoting {𝑣𝑣1, … , 𝑣𝑣4} to be

the output of the preceding dense variational layer, we have the following as the

distribution function:

𝐹𝐹(𝑦𝑦) = 𝑤𝑤1(𝑣𝑣1, 𝑣𝑣2)𝑃𝑃(𝑦𝑦; 𝑣𝑣3, (𝛼𝛼 + 𝜆𝜆𝜆𝜆(𝛽𝛽𝑣𝑣4))2) + 𝑤𝑤2(𝑣𝑣1, 𝑣𝑣2)𝐹𝐹0(𝑦𝑦).  (15)

We now describe the components of Equation (15). First,

𝑤𝑤𝑖𝑖 =
𝑒𝑒𝑣𝑣𝑖𝑖

𝑒𝑒𝑣𝑣1 + 𝑒𝑒𝑣𝑣2
 (𝑖𝑖 = 1,2)  (16)

are the normalized mixing weights. 𝑃𝑃(𝑦𝑦; 𝜇𝜇,𝜎𝜎2) denotes the distribution function for a

log-normal distribution with location and scale parameters 𝜇𝜇 and 𝜎𝜎, respectively, shifted

to the left by 0.001 to accommodate zeros in the data. In other words, if 𝑌𝑌 ∼ 𝐿𝐿𝐿𝐿(𝜇𝜇,𝜎𝜎2),

then 𝑌𝑌 − 0.001 ∼ 𝑃𝑃. This modification is necessary because we have zero cash flows in

Individual Claims Forecasting with Bayesian Mixture Density Networks

Casualty Actuarial Society Research Paper 15

the response sequences, and computing the likelihood becomes problematic since the

support of the log-normal distribution does not contain zero.4

𝐹𝐹0(𝑦𝑦) = �1, if 𝑦𝑦 ≥ 0
0, if 𝑦𝑦 < 0�  (17)

is the distribution function for the deterministic distribution, and 𝜎𝜎 is the sigmoid

function defined as

𝜎𝜎(𝑡𝑡) =
1

1 + 𝑒𝑒−𝑡𝑡
.  (18)

In Equation (15), the constants 𝛼𝛼,𝛽𝛽 > 0 are included for numerical stability and can

be tuned as hyperparameters, although we set them to 0.001 and 0.01, respectively, for

our experiments. The purpose of 𝜆𝜆 is also numerical stability, as the scale parameter of

the log-normal distribution is hard to learn in practice, so we bound it above by a

constant. In our experiments we fix it to be 0.7.

The net loss prediction for each development year is then the difference of the paid

loss and recovery amounts. We assume that the output distributions, conditional on

their parameters, are independent across the time steps, which facilitates the derivation

of the loss function in the next section. We remark that this is a weakness of our

approach, since the independence assumption is not fulfilled in practice.

Loss Function
We calculate the log-likelihood loss for each output by computing the log probability

of the true labels with respect to the output distributions. As mentioned in Section 4.3,

the output sequences may contain masking values that need to be adjusted. Specifically,

we marginalize out the components with the masking values. Formally, for a given

training sample, let 𝑀𝑀 denote the masking constant, 𝑌𝑌 = (𝑌𝑌1, … ,𝑌𝑌11) denote a single

4 As of the writing of this paper, TensorFlow Probability attempts to evaluate all terms in the likelihood of
the mixture.

Individual Claims Forecasting with Bayesian Mixture Density Networks

Casualty Actuarial Society Research Paper 16

output sequence, 𝑌𝑌𝒯𝒯𝑀𝑀 = (𝑌𝑌𝑖𝑖:𝑌𝑌𝑖𝑖 = 𝑀𝑀), and, abusing notation, also let 𝒯𝒯𝑀𝑀 = {𝑖𝑖:𝑌𝑌𝑖𝑖 = 𝑀𝑀}.

Then,

𝑓𝑓𝑌𝑌\𝑌𝑌𝒯𝒯𝑀𝑀
(𝑌𝑌) = � 𝑓𝑓

𝑌𝑌𝒯𝒯𝑀𝑀

(𝑌𝑌)𝑑𝑑𝑌𝑌𝒯𝒯𝑀𝑀

= � 𝑓𝑓
𝑌𝑌𝒯𝒯𝑀𝑀

(𝑌𝑌\𝑌𝑌𝒯𝒯𝑀𝑀 ,𝑌𝑌𝒯𝒯𝑀𝑀)𝑑𝑑𝑌𝑌𝒯𝒯𝑀𝑀

= 𝑓𝑓𝑌𝑌\𝑌𝑌𝒯𝒯𝑀𝑀
(𝑌𝑌\𝑌𝑌𝒯𝒯𝑀𝑀)� 𝑓𝑓𝑌𝑌𝒯𝒯𝑀𝑀𝑌𝑌𝒯𝒯𝑀𝑀

(𝑌𝑌𝒯𝒯𝑀𝑀)𝑑𝑑𝑌𝑌𝒯𝒯𝑀𝑀 (by independence)

= 𝑓𝑓𝑌𝑌\𝑌𝑌𝒯𝒯𝑀𝑀
(𝑌𝑌\𝑌𝑌𝒯𝒯𝑀𝑀)

= �𝑓𝑓𝑌𝑌𝑖𝑖
𝑖𝑖∉𝒯𝒯𝑀𝑀

(𝑌𝑌𝑖𝑖) (by independence).

The adjusted log-likelihood for a single training sample then becomes

logℒ(𝑌𝑌) = log𝑓𝑓𝑌𝑌\𝑌𝑌𝒯𝒯𝑀𝑀
(𝑌𝑌)

= log �𝑓𝑓𝑌𝑌𝑖𝑖
𝑖𝑖∉𝒯𝒯𝑀𝑀

(𝑌𝑌𝑖𝑖)

= � log
𝑇𝑇

𝑖𝑖=1

𝑓𝑓𝑌𝑌𝑖𝑖(𝑌𝑌𝑖𝑖),

where 𝑇𝑇 is min𝒯𝒯𝑀𝑀 − 1 if 𝒯𝒯𝑀𝑀 is nonempty and 11 otherwise.

Hence, the log-likelihood associated with a training sample is the sum of the log

probabilities of the non-masked elements. The negative log-likelihood, summed with the

KL term associated with the variational layers, discussed in Section 3.2, comprise the

total network loss for optimization. The contribution of a single training sample to the

loss is then

� log
𝑇𝑇

𝑖𝑖=1

𝑓𝑓𝑌𝑌𝑖𝑖(𝑌𝑌𝑖𝑖) +
1

|𝒟𝒟| �𝐷𝐷𝐾𝐾𝐾𝐾

2

𝑘𝑘=1

(𝑞𝑞𝑘𝑘(𝑤𝑤𝑘𝑘|𝜃𝜃𝑘𝑘)�𝑃𝑃𝑘𝑘(𝑤𝑤𝑘𝑘)�,  (19)

where 𝑘𝑘 = 1,2 correspond to variational layers for parameterizing the paid loss and

recovery distributions, respectively.

Individual Claims Forecasting with Bayesian Mixture Density Networks

Casualty Actuarial Society Research Paper 17

Training and Scoring
We use a random subset of the training set consisting of 5% of the records as the

validation set for determining early stopping and scheduling the learning rate. For

optimizing the neural network, we use stochastic gradient descent with an initial

learning rate of 0.01 and a minibatch size of 100,000, and we halve the learning rate

when there is no improvement in the validation loss for five epochs. Training is stopped

early when the validation loss does not improve for ten epochs; we cap the maximum

number of epochs at 100. Here, an epoch refers to a complete iteration through our

training dataset, and the minibatch size refers to how many training samples we

randomly sample for each gradient descent step.

To forecast an individual claim, we construct a scoring data point by using all data

available to us as of the evaluation date cutoff. In other words, the last elements of the

predictor cash flow sequences correspond to the actual value from the cutoff year.

Hence, in the output sequence, the first element corresponds to the prediction of the

cash flow distribution of the year after the cutoff.

Recall that our model weights are a random variable, so each time we score a new

data point, we are sampling from the distribution of model weights and expect to obtain

different parameters for the distributions of cash flows. The output distributions

themselves are also stochastic and can be sampled from. Following (Kendall and Gal

2017), we refer to the former variability as epistemic uncertainty and the latter as aleatoric

uncertainty. Epistemic uncertainty reflects uncertainty about our model which can be

reduced given more training data, while aleatoric uncertainty reflects the irreducible

noise in the observations. In actuarial science literature, these concepts are also known as

parameter estimation uncertainty and process uncertainty, respectively (Wuthrich 2017).

Generating a distribution of future paths of cash flows amounts to repeating the

procedure of drawing a model from its distribution, calculating the output distribution

parameters using the drawn model, then drawing a sample of cash flows from the

distribution. Since we decompose the cash flows into paid losses and recoveries, we can

Individual Claims Forecasting with Bayesian Mixture Density Networks

Casualty Actuarial Society Research Paper 18

obtain net amounts by subtracting the generated recoveries from the generated paid

losses.

If we were only interested in point estimates, we can avoid sampling the output

distributions and simply compute their means, since given the model weights we have

closed form expressions for the distributions given by Equation (15). Note that we

would still have to sample the model weights.

Results and Discussion
We evaluate our modeling framework by qualitatively inspecting samples paths

generated for an individual claim and also comparing the aggregate estimate of unpaid

claims with a chain ladder estimate. We note that, to the best of our knowledge, prior to

the current paper, there is not a benchmark for individual claims forecasts. We also

discuss the extensibility of our approach to accommodate company specific data

elements and expert knowledge.

Individual Claim Forecasts
Figure 3 shows various posterior densities, obtained by sampling the model weights

1,000 times, of parameters for the output distributions of a single claim. Our model

assigns a higher probability of payment in the next year along with more variability

around that probability. It can be seen that the expected probability of a payment

decreases as we forecast further into the future. Given that a loss payment occurs, we see

from the middle and bottom plots that both the expected value and the variability for

both the mean and variance of the log-normal distributions increase with time. In other

words, for this particular claim, loss payments become less likely as time goes on, but if

they occur, they tend to be more severe and the model is less certain about the severity

distribution.

Individual Claims Forecasting with Bayesian Mixture Density Networks

Casualty Actuarial Society Research Paper 19

Figure 3. Posterior distributions for a single claim at development year 4. (Top) Payment
probability. (Middle) Mean of loss payment distribution. (Bottom) Log variance of payment
distribution.

Figure 4. 1,000 samples of cumulative cash flow paths for a single claim. The training data
includes development year 4 and the predictions begin in development year 5.

In Figure 4 we show plausible future developments of the claim. Note that one

thousand samples are drawn, so the handful of scenarios that present large payments

represents a small portion of the paths, which is consistent with the distributions of

parameters we see above.

Individual Claims Forecasting with Bayesian Mixture Density Networks

Casualty Actuarial Society Research Paper 20

Aggregate estimates
To compute a point estimate for the total unpaid losses, we score each claim once (i.e.,

sample from the weights distribution once) to obtain a distribution for each time step for

paid losses and recoveries. We then compute the means of the paid loss and recovery

distributions and take the differences to obtain the net cash flow amount. The final

unpaid loss estimate is then the sum of all the net amounts up to and including

development year 11. Since there is randomness in the neural network weight

initialization, we instantiate and train the model 10 times, and take the average of the

predicted future paid losses across the 10-model ensemble. In practice, one could

distribute the prediction procedure over a computing cluster and draw more samples

for an even more stable estimate.

For the chain ladder development method benchmark, we aggregate the data into a

report year triangle (to exclude IBNR), calculate ultimate losses using all-year weighted

age-to-age factors, then subtract the already paid amounts to arrive at the unpaid

estimate. The unpaid amounts from the two approaches are then compared to the actual

unpaid amounts. The results are shown in Table 2.

Model Forecast Error

Actual 109,216,388 –

Chain Ladder 108,040,572 −1.08%

Ours (10-Model Ensemble) 102,502,710 −6.15%

Table 2: Aggregate forecast results.

While we are not improving on chain ladder estimates at the aggregate level for this

particular simulated dataset, our approach is able to provide individual claims forecasts,

which are interesting in their own right.

Individual Claims Forecasting with Bayesian Mixture Density Networks

Casualty Actuarial Society Research Paper 21

Extensibility
One of the primary advantages of neural networks is their flexibility. Considering the

architecture described in Section 4.4, we can include additional predictors by appending

additional input layers. These inputs can be unstructured, and we can leverage

appropriate techniques to process them before combining with the existing features. For

example, we may utilize convolutional layers to transform image inputs and recurrent

layers to transform audio or text inputs.

The forms of the output distributions can also be customized. We choose a log-

normal mixture for our dataset, but depending on the specific book of business, one may

want to specify a different distribution, such as a Gamma or a Gaussian. As we have

done in constraining the scale parameter of the log-normal distribution, the modeler also

has the ability to bound or fix specific parameters as situations call for them.

Conclusion
We have introduced a framework for individual claims forecasting that can be

utilized in loss reserving. By leveraging Bayesian neural networks and stochastic output

layers, our approach provides ways to learn uncertainty from the data. It is also able to

produce cash flow estimates for multiple future time periods. Experiments confirm that

the approach gives reasonable results and provides a viable candidate for future work

on individual claims forecasting to benchmark against.

There are a few potential avenues for enhancements and extensions, including larger

scale simulations to evaluate the quality of uncertainty estimates, evaluating against

new datasets, and relaxing simplifying assumptions, such as the independence of time

steps to obtain more internally consistent forecasts. One main limitation of the proposed

approach and experiments is that we focus on reported claims only. With access to

policy level data, a particularly interesting direction of research would be to extend the

approach to also estimate IBNR claims.

Individual Claims Forecasting with Bayesian Mixture Density Networks

Casualty Actuarial Society Research Paper 22

Acknowledgments
We thank Sigrid Keydana, Daniel Falbel, Mario Wüthrich, and volunteers from the

Casualty Actuarial Society (CAS) for helpful discussions. This work is supported by the

CAS.

References
Abadi, Martı́n, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, et al. 2015. “TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems.” https://www.tensorflow.org/.

Antonio, Katrien, and Richard Plat. 2014. “Micro-Level Stochastic Loss Reserving for
General Insurance.” Scandinavian Actuarial Journal 2014 (7):649–69.

Baudry, Maximilien, and Christian Y. Robert. n.d. “A Machine Learning Approach for
Individual Claims Reserving in Insurance.” Applied Stochastic Models in Business
and Industry.

Bishop, Christopher M. 1994. “Mixture Density Networks.”

Blundell, Charles, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. 2015.
“Weight Uncertainty in Neural Networks.” arXiv:1505.05424 [Cs, Stat], May.
http://arxiv.org/abs/1505.05424.

Boumezoued, Alexandre, and Laurent Devineau. 2017. “Individual Claims Reserving: A
Survey.”

Duval, Francis, and Mathieu Pigeon. 2019. “Individual Loss Reserving Using a Gradient
Boosting-Based Approach.” Risks 7 (3):79. https://doi.org/10.3390/risks7030079.

Gabrielli, Andrea. 2019. “A Neural Network Boosted Double over-Dispersed Poisson
Claims Reserving Model.” SSRN Scholarly Paper ID 3365517. Rochester, NY:
Social Science Research Network.

Gabrielli, Andrea, Ronald Richman, and Mario V. Wüthrich. 2019. “Neural Network
Embedding of the over-Dispersed Poisson Reserving Model.” Scandinavian
Actuarial Journal, 1–29.

Gabrielli, Andrea, and Mario V Wüthrich. 2018. “An Individual Claims History
Simulation Machine.” Risks 6 (2):29.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT press.

Graves, Alex. 2011. “Practical Variational Inference for Neural Networks.” In Advances in
Neural Information Processing Systems, 2348–56.

https://www.tensorflow.org/
http://arxiv.org/abs/1505.05424
https://doi.org/10.3390/risks7030079

Individual Claims Forecasting with Bayesian Mixture Density Networks

Casualty Actuarial Society Research Paper 23

Guo, Cheng, and Felix Berkhahn. 2016. “Entity Embeddings of Categorical Variables.”
arXiv Preprint arXiv:1604.06737.

Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. “Long Short-Term Memory.” Neural
Computation 9 (8):1735–80.

Kendall, Alex, and Yarin Gal. 2017. “What Uncertainties Do We Need in Bayesian Deep
Learning for Computer Vision?” In Advances in Neural Information Processing
Systems, 5574–84.

Kuo, Kevin. 2019. “DeepTriangle: A Deep Learning Approach to Loss Reserving.” Risks
7 (3):97.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. “Deep Learning.” Nature 521
(7553):436.

Lopez, Olivier, Xavier Milhaud, and Pierre-E. Thérond. 2019. “A Tree-Based Algorithm
Adapted to Microlevel Reserving and Long Development Claims.” ASTIN
Bulletin: The Journal of the IAA, 1–22.

Neal, Radford M. 2012. Bayesian Learning for Neural Networks. Springer Science &
Business Media.

Pigeon, Mathieu, Katrien Antonio, and Michel Denuit. 2013. “Individual Loss Reserving
with the Multivariate Skew Normal Framework.” ASTIN Bulletin: The Journal of
the IAA 43 (3):399–428.

———. 2014. “Individual Loss Reserving Using PaidIncurred Data.” Insurance:
Mathematics and Economics 58:121–31.

R Development Core Team, RFFSC. 2011. R: A Language and Environment for Statistical
Computing. R foundation for statistical computing Vienna, Austria.

Taylor, Greg. 2019. “Loss Reserving Models: Granular and Machine Learning Forms.”
Risks 7 (3):82.

Wuthrich, Mario V. 2017. “Non-Life Insurance: Mathematics & Statistics.” Available at
SSRN 2319328.

Wüthrich, Mario V. 2018a. “Machine Learning in Individual Claims Reserving.”
Scandinavian Actuarial Journal 2018 (6):465–80.

———. 2018b. “Neural Networks Applied to ChainLadder Reserving.” European
Actuarial Journal 8 (2):407–36.

	Individual Claims Forecasting with Bayesian Mixture Density Networks
	Kevin Kuo
	February 2020
	Abstract
	We introduce an individual claims forecasting framework utilizing Bayesian mixture density networks that can be used for claims analytics tasks such as case reserving and triaging. The proposed approach enables incorporating claims information from both structured and unstructured data sources, producing multi-period cash flow forecasts, and generating different scenarios of future payment patterns. We implement and evaluate the modeling framework using publicly available data.
	Keywords
	Claims reserving, individual claims reserving, loss reserving
	Introduction
	Individual claims reserving has garnered increasing interest in recent years. While the main benefit cited for performing reserving at the claim level over aggregate loss triangle approaches, such as chain ladder and Bornhuetter-Ferguson, is potential improvement in predictive accuracy, especially in environments with changing portfolio mix (Boumezoued and Devineau 2017), there are additional practical advantages to forecasting individual claim behavior. These include being able to obtain updated views of portfolio risk as claims are reported and optimize adjuster resource allocation based on severity predictions. Although the benefits of individual claims modeling are promising, it has not yet achieved widespread adoption in practice. One contributing reason for the lack of adoption, we hypothesize, is the absence of a modeling framework with features important to practitioners. We suggest that an effective loss reserves modeling framework should be able to:
	• Incorporate arbitrary claims information as predictors,
	• Produce multi-period forecasts that are sufficiently stable over time, and
	• Sample different realizations of future payment patterns that encompass both process uncertainty and model risk.
	Companies are capturing increasingly diverse data, such as unstructured text from claims adjusters’ notes and photographs of damages, that can potentially be predictive. Timing of cash flows and being able to sample from different future states have both business decision making and regulatory applications. A desirable characteristic of the forecasts is that they are stable over time, as management is averse to volatility in loss reserves figures from one accounting period to the next. A subjective criterion not listed above, which may affect adoption of an approach, is that the models should be implementable without the need for extensive bespoke feature engineering or specification of complex assumptions for underlying stochastic processes.
	To the best of our knowledge, no existing loss reserving framework implements all of the above features. In this paper, we propose an extensible individual claims forecasting framework towards satisfying many of these criteria, utilizing ideas from Bayesian neural networks (BNN) (Neal 2012) and mixture density networks (MDN) (Bishop 1994). While we discuss these concepts in detail later in the paper, at a high level,
	• BNNs are non-linear supervised learning models that capture complex interactions among inputs, with prior distributions on model parameters; and
	• MDNs are mixture models for conditional densities, where the mixture model parameters are the outputs of the neural network.
	Concretely, our contributions are:
	• Development of an individual claims forecasting framework based on Bayesian Mixture Density Networks (BMDN).
	• Implementation of the proposed framework using publicly available claims-level data, which provides a baseline for future work to compare against.
	Related Work
	Claims-level reserving is a fast-moving research area, and (Boumezoued and Devineau 2017) and (Taylor 2019) provide recent surveys. Many of the current works in the area utilize machine learning (ML) techniques. Wüthrich (Wüthrich 2018a) introduces using machine learning algorithms to incorporate diverse claims characteristics inputs. It demonstrates a simple model where regression trees are used to predict the number of payments, and it suggests extensions such as compound modeling to predict severity and bootstrap simulation to obtain prediction uncertainty. More recently, (Duval and Pigeon 2019; Lopez, Milhaud, and Thérond 2019; Baudry and Robert, n.d.) also utilize tree-based techniques for individual claims reserving. Another direction of research for the individual claims reserving problem are the generative approaches of, for example, (Antonio and Plat 2014; Pigeon, Antonio, and Denuit 2013, 2014). In this latter category of methodologies, a set of distributional assumptions are posited for the different drivers of claims, such as time to the next payment and its amount. These distributions are fit to the data, then, with the obtained parameters, the modeler is able to perform simulations of future development paths by sampling from the fitted distributions. While this approach provides a natural way to obtain samples of future cash flow paths, the distributional assumptions may be too rigid in some cases. It is also difficult to incorporate individual claim characteristics; to differentiate among different characteristics, one would have to segment the claims and fit separate models to each group.
	In formulating our framework, we also draw inspiration from machine learning approaches to aggregate triangle data, including (Gabrielli, Richman, and Wüthrich 2019; Gabrielli 2019), which embed a classical parametric loss reserving model into neural networks, and the DeepTriangle (Kuo 2019) framework, whose neural network architecture we adapt for individual claims data.
	Preliminaries
	We begin with a description of the loss reserving problem then briefly discuss BNN and MDN, two ideas that we incorporate into our claims forecasting neural network. As neural networks have been utilized and discussed extensively in recent loss reserving literature (Gabrielli, Richman, and Wüthrich 2019; Gabrielli 2019; Kuo 2019; Wüthrich 2018b; Gabrielli and V Wüthrich 2018), we defer discussion of neural network fundamentals to those works and the standard reference (Goodfellow, Bengio, and Courville 2016). To aid the practicing actuary in consuming this paper, we expand on certain concepts when we introduce the proposed neural network architecture in 4.4.
	We remark that in sections 3.2 and 3.3, we discuss Bayesian inference and mixture density networks, respectively, in general, and provide details on our specific choices of distributions later on in the paper.
	The Loss Reserving Problem

	Figure 1 shows a diagram of the development of a typical claim. We first point out that there can be a time difference, known as the reporting lag, between an accident’s occurrence and its reporting. The accidents which have been reported to the insurer, but not yet settled, are known as reported but not settled (RBNS) or, equivalently, incurred but not enough reported (IBNER) claims, while the accidents which have occurred but are yet unknown to the insurer are known as incurred but not reported (IBNR) claims. The reserving actuary is interested in estimating the ultimate loss amounts associated with accidents that have already occurred. As demonstrated in Figure 1, it is possible for a closed claim to re-open, and it is also possible for a claim to be closed without any cash flows.
	In this paper, we are concerned with RBNS/IBNER, but not IBNR, claims, due to limitations of available data, as for IBNR claims we do not have individual claim feature information available. Also, the claims we study encompass closed claims to allow for the possibility of claim re-opening.
	/
	Figure 1. Development of a claim
	Bayesian Inference on Neural Networks

	In this section, we briefly discuss Bayesian inference on neural networks, following the discourse in (Graves 2011) and (Blundell et al. 2015).
	Consider a neural network parameterized by weights 𝑤 that takes input 𝑥 and returns output 𝑦. We can view this general formulation as a probabilistic model 𝑃(𝑦|𝑥,𝑤); as an example, in the case of linear regression where 𝑦∈ℝ, mean squared loss is specified, and constant variance is assumed, 𝑃(𝑦|𝑥,𝑤) corresponds to a Gaussian distribution.
	Rather than treating 𝑤 as a fixed unknown parameter, we adapt a Bayesian perspective and treat 𝑤 as a random variable with some prior distribution 𝑃(𝑤). The task is then to compute the posterior distribution 𝑃(𝑤|𝑥,𝑦) given the training data. We can then calculate the posterior predictive distribution 𝑃(𝑦∗|𝑥∗)=𝔼𝑃(𝑤|𝑥,𝑦)[𝑃(𝑦∗|𝑥∗,𝑤)], where 𝑥∗ is a new data point to be scored and 𝑌∗ the corresponding unknown response. However, determining 𝑃(𝑤|𝑥,𝑦) analytically is intractable, and convergence of Markov chain Monte Carlo (MCMC) to the actual posterior for nontrivial neural networks is too slow to be feasible. Variational inference provides a workaround to this problem by approximating the posterior with a more tractable distribution 𝑞(𝑤|𝜃), which is often chosen to come from the mean-field family, i.e., 𝑞(𝑧)=𝑖​𝑞(𝑧𝑖), but can be more general (Blundell et al. 2015). We then formulate an optimization problem to find the parameters 𝜃. Specifically, we minimize the Kullback-Leibler (KL) divergence from the true posterior distribution 𝑃 to the approximate distribution 𝑞. KL divergence is defined in general for probability distributions 𝑃 to 𝑄 as
	𝐷𝐾𝐿(𝑄‖𝑃)=∫𝑞(𝑥)log𝑞(𝑥)𝑝(𝑥)𝑑𝑥.  (1)
	Our optimization problem can then be stated as
	𝜃∗=argmin𝜃𝐷𝐾𝐿(𝑞(𝑤|𝜃)‖𝑃(𝑤|𝒟))  (2)=argmin𝜃∫𝑞(𝑤|𝜃)log𝑞(𝑤|𝜃)𝑃(𝑤|𝒟)𝑑𝑤  (3)=argmin𝜃∫𝑞(𝑤|𝜃)log𝑞(𝑤|𝜃)𝑃(𝑤)𝑃(𝒟|𝑤)𝑑𝑤  (4)=argmin𝜃𝐷𝐾𝐿(𝑞(𝑤|𝜃)‖𝑃(𝑤))−𝔼𝑞(𝑤|𝜃)[log𝑃(𝒟|𝑤)]  (5)
	where 𝒟=(𝑥𝑖,𝑦𝑖)𝑖 is the training dataset. We remark that, in Equation (2), the 𝑃(𝒟) term resulting from applying Bayes’ theorem to 𝑃(𝑤|𝒟) disappears because it is irrelevant to the optimization.
	Equation (1) then gives us the optimization objective
	ℱ(𝒟,𝜃)=𝐷𝐾𝐿(𝑞(𝑤|𝜃)‖𝑃(𝑤))−𝔼𝑞(𝑤|𝜃)[log𝑃(𝒟|𝑤)]  (6)
	In practice, during training, where 𝒟 is randomly split into 𝑀 mini-batches 𝒟1,…,𝒟𝑀, we compute ℱ(𝒟,𝜃)=1𝑀ℱ𝑖(𝒟𝑖,𝜃), where
	ℱ𝑖(𝒟𝑖,𝜃)=|𝒟𝑖||𝒟|𝐷𝐾𝐿(𝑞(𝑤|𝜃)‖𝑃(𝑤))−𝔼𝑞(𝑤|𝜃)[log𝑃(𝒟𝑖|𝑤)]  (7)
	which we approximate with
	ℱ𝑖(𝒟𝑖,𝜃)≈𝑗=1|𝒟𝑖|1|𝒟|(log𝑞(𝑤(𝑗)|𝜃)−log𝑃(𝑤(𝑗)))−log𝑃(𝒟𝑖|𝑤(𝑗))  (8)
	where the 𝑤(𝑗) are sampled independently from 𝑞(𝑤|𝜃). In other words, we sample from the weights distribution just once for each training sample.
	Mixture Density Networks

	In practical applications, the response variables we try to predict often have multimodal distributions and exhibit heteroscedastic errors. This is particularly relevant in forecasting claims cash flows since, in a given time period, there could be a large payment or little or no payment. An MDN allows the output to follow a mixture of arbitrary distributions and estimate each of its parameters with the neural network. Recall that a mixture distribution has a distribution function of the form
	𝐹𝑧=𝑖=1𝑛𝑤𝑖𝑃𝑖𝑧,  (9)
	where each 𝑤𝑖≥0, ∑𝑤𝑖=1, and 𝑛 is the number of component distributions 𝑃𝑖. Letting 𝒫 denote the union of the sets of parameters for the distributions 𝑃1,…,𝑃𝑛, the neural network must then output 𝑛+|𝒫| values. The first 𝑛 values determine the categorical distribution of the mixing weights, and the |𝒫| outputs parameterize the component distributions.
	By obtaining distributions rather than single points as prediction outputs, we also gain a straightforward mechanism to quantify the uncertainty of individual cash flow forecasts.
	We emphasize now the difference between the uncertainty captured by specifying a distribution as the neural network’s output, as discussed here, and the uncertainty in the weight distribution, as discussed in Section 3.2. The former corresponds to the irreducible pure randomness, while the latter reflects uncertainty in parameter estimation.
	Data and Model
	In this section, we describe the data used for our experiments and the proposed model. The dataset used and relevant code are available on GitHub. The experiments are implemented using the R programming language (R Development Core Team 2011) and TensorFlow (Abadi et al. 2015).
	Data

	We utilize the individual claims history simulator of (Gabrielli and V Wüthrich 2018) to generate data for our experiments. For each claim, we have the following static information: line of business, labor sector of the injured, accident year, accident quarter, age of the injured, part of body injured, and the reporting year. In addition, we also have 12 years of claim development information, in the form of cash flows and claims statuses (whether the claim is open or not). The generated claims history exhibit behaviors such as negative cash flows for recoveries and late reporting, which mimic realistic scenarios.
	Since we only have claims data and not policy level and exposure data, we study only reported claims.
	Experiment Setup

	We first simulate approximately 500,000 claims using the simulator, which provides us with the full development history of these claims. The claims cover accident years 1994 to 2005. Since we are concerned with reported claims, we remove claims with report date after 2005, which leaves us with N = 497,516 claims. In this paper, we assume that each claim is fully developed at development year 11 (note that in the dataset the first development year is denoted year 0). More formally, we can represent the dataset as the collection
	𝒟={(𝑋𝑗,𝐶𝑖𝑗)0≤𝑖≤11,𝑆𝑖𝑗)0≤𝑖≤11:𝑗∈1,…,𝑁,  (10)
	where 𝑋, (𝐶𝑖), and (𝑆𝑖) denote the static claim features, incremental cash flow sequences, and claim status sequences, respectively, and 𝑗 indexes the claims.
	To create the training and testing sets, we select year 2005 as the evaluation year cutoff. For the training set, any cash flow information available after 2005 is removed. In symbols, we have
	𝒟train=𝑋𝑗,𝐶𝑖𝑗,𝑆𝑖𝑗:𝑖+AY𝑗≤2005,𝑗∈1,…,𝑁,  (11)
	where AY(𝑗) denotes the accident year associated with claim 𝑗.
	For each claim in the training set, we create a training sample for each time period after development year 0. The response variable consists of cash flow information available as of the end of each time period until the evaluation year cutoff, and predictors are derived from information available before the time period. For a claim 𝑗, we have the following input-output pairs:
	𝑋𝑗,𝐶0𝑗,…,𝐶𝑖𝑗,𝑆0𝑗,…,𝑆𝑖𝑗,𝐶𝑖+1𝑗,…,𝐶𝑘𝑗𝑗:𝑖=0,…,𝑘𝑗−1,  (12)
	where 𝑘(𝑗) denotes the latest development year for which data is available for claim 𝑗 in the training set. As an example, if a claim has an accident year of 2000, five training samples are created. The first training sample has cash flows from 2001 to 2005 for the response and one cash flow value from 2000 for the predictor, while the last training sample has only the cash flow in year 2005 for the response and cash flows from 2000 to 2004 for the predictor.
	We note here that we do not predict future claim statuses. As we will discuss in Section 4.4.4, our output distributions, which contain point masses at zero, can accommodate behaviors of both open and closed claims.
	The training samples in Equation (12) undergo additional transformations before they are used for training our model. We discuss these transformations in detail in the next section.
	Feature Engineering

	We exhibit the predictors used and associated transformations in Table 1. In the raw simulated data, each time period has a cash flow amount along with a claim open status indicator associated with it. We take the cash flow value and derive two variables from it: the paid loss and the recovery, corresponding to the positive part and negative part of the cash flow, respectively. In other words, for each claim and for each time step, at most one of paid loss and recovery can be nonzero. For predictors, both the paid losses and recoveries are centered and scaled with respect to all instances of their values in the training set. The response cash flow values are not normalized.
	Claim status indicator, which is a scalar value of 0 or 1, is one-hot encoded (i.e., represented using dummy variables); for each training sample, a claim status value is available for each time step.
	Development year is defined as the number of years since the accident occurred. It is then scaled to [0,1].
	The static claim characteristic variables include age, line of business, occupation of the claimant, and the injured body part. Of these, age is numeric while the others are categorical. We center and scale the age variable and integer-index the others, which are fed into embedding layers (Guo and Berkhahn 2016), discussed in the next section.
	As noted in the previous section, the response variable and the sequence predictors can have different lengths (in terms of time steps) from one sample to the next. To facilitate computation, we pre-pad and post-pad the sequences with a predetermined masking value (we use 99999) so that all sequences have a fixed length of 11.
	Table 1. Predictor variable and transformations

	Variable
	Type
	Preprocessing
	Paid loss history
	Numeric sequence
	Centered and scaled
	Recovery history
	Numeric sequence
	Centered and scaled
	Claim status history
	Categorical sequence
	One-hot encoded
	Development year
	Integer
	Scaled to [0, 1]
	Age
	Numeric
	Centered and scaled
	Line of business
	Categorical
	Indexed
	Claim code (occupation)
	Categorical
	Indexed
	Injured part
	Categorical
	Indexed
	Claims Forecasting Model

	We utilize an encoder-decoder architecture with sequence output similar to the model proposed by (Kuo 2019). The architecture is illustrated in Figure 2. We first provide a brief overview of the architecture, then provide details on specific components later in the section.
	The output in our case is the future sequence of distributions of loss payments, and the input is the cash flow and claim status history along with static claim characteristics.
	/
	Figure 2. Claims forecasting model architecture. Note that the weights for the variational dense layers are shared across time steps.

	Static categorical variable inputs, such as labor sector of the injured, are indexed, then connected to embedding layers (Guo and Berkhahn 2016) and sequential data, including payments and claim statuses, are connected to long short-term memory (LSTM) layers (Hochreiter and Schmidhuber 1997).
	The encoded inputs are concatenated together, then repeated 11 times before being passed to a decoder LSTM layer which returns a sequence. The length of this output sequence is so chosen to match our requirement to forecast a maximum of 11 steps into the future. Each time step of this sequence is connected to two dense variational layers, each of which parameterizes an output distribution, corresponding to paid losses and recoveries, respectively. The weights of the dense variational layer (for paid loss and recovery) are each shared across the time steps. In other words, for each training sample, we output two 11-dimensional random variables, each of which can be considered as a collection of 11 independent but non-identically distributed random variables.
	We use the same loss function for each output and weight them equally for model optimization. The loss function is the negative log-likelihood given the target data with an adjustment for variable output lengths which we discuss in detail in Section 4.4.5.
	In the remainder of this section, we discuss in more detail embedding layers, LSTM, our choices of the variational and distribution layers, the loss function, and model training.
	Embedding Layer

	An embedding layer maps each level of a categorical variable to a fixed-length vector in 𝑛-dimensional Euclidean space. The value of 𝑛 is a hyperparameter chosen by the modeler; in our case we select 𝑛=2 for all embedding layers, which means we map each factor level to a point in ℝ2. In contrast to data-preprocessing dimensionality techniques such as principal component analysis (PCA) or t-distributed stochastic neighbor embedding (t-SNE), the values of the embeddings are learned during training of the neural network.
	Long Short-Term Memory

	LSTM is a type of recurrent neural network (RNN) architecture that is appropriate for sequential data, such as natural language or time series (our use case). Empirically, LSTM is more apt at handling data with longer term dependencies than simple RNN (LeCun, Bengio, and Hinton 2015). In our model, for both of the sequence input encoders and the decoder, we utilize a single layer of LSTM with 3 hidden units. We found that these relatively small modules provided reasonable results but did not perform comprehensive tuning to test deeper and larger architectures.
	Dense Variational Layer

	We choose Gaussians for both the prior and surrogate posterior distributions over the weights of the dense layers. The prior distribution is constrained to have zero mean and unit variance while for the surrogate posterior both the mean and variance are trainable. Symbolically, if we let 𝑤 denote the weights associated with each dense layer, we have
	𝑃(𝑤)=𝒩(0,𝐼) and  (13)
	𝑞𝑤𝜃=𝒩𝜇𝜃,𝜎𝜃,  (14)
	where 𝜃 represents trainable parameters. The KL term associated with estimation, as described in Section 3.2, is added to the neural network loss during optimization. The dense layers each output four units to parameterize the output distributions which we discuss next.
	Output Distribution

	For each of the 11 time steps we forecast, we parameterize two distributions, one for paid losses and one for recoveries. Each of the distributions is chosen to be a mixture of a shifted log-normal distribution and a deterministic degenerate distribution localized at zero, representing cash flow and no cash flow, respectively. Denoting {𝑣1,…,𝑣4} to be the output of the preceding dense variational layer, we have the following as the distribution function:
	𝐹(𝑦)=𝑤1(𝑣1,𝑣2)𝑃(𝑦;𝑣3,𝛼+𝜆𝜎𝛽𝑣4)2+𝑤2𝑣1,𝑣2𝐹0𝑦.  (15)
	We now describe the components of Equation (15). First,
	𝑤𝑖=𝑒𝑣𝑖𝑒𝑣1+𝑒𝑣2 (𝑖=1,2)  (16)
	are the normalized mixing weights. 𝑃(𝑦;𝜇,𝜎2) denotes the distribution function for a log-normal distribution with location and scale parameters 𝜇 and 𝜎, respectively, shifted to the left by 0.001 to accommodate zeros in the data. In other words, if 𝑌∼𝐿𝑁(𝜇,𝜎2), then 𝑌−0.001∼𝑃. This modification is necessary because we have zero cash flows in the response sequences, and computing the likelihood becomes problematic since the support of the log-normal distribution does not contain zero.
	𝐹0(𝑦)=1,if 𝑦≥00,if 𝑦<0  (17)
	is the distribution function for the deterministic distribution, and 𝜎 is the sigmoid function defined as
	𝜎𝑡=11+𝑒−𝑡.  (18)
	In Equation (15), the constants 𝛼,𝛽>0 are included for numerical stability and can be tuned as hyperparameters, although we set them to 0.001 and 0.01, respectively, for our experiments. The purpose of 𝜆 is also numerical stability, as the scale parameter of the log-normal distribution is hard to learn in practice, so we bound it above by a constant. In our experiments we fix it to be 0.7.
	The net loss prediction for each development year is then the difference of the paid loss and recovery amounts. We assume that the output distributions, conditional on their parameters, are independent across the time steps, which facilitates the derivation of the loss function in the next section. We remark that this is a weakness of our approach, since the independence assumption is not fulfilled in practice.
	Loss Function

	We calculate the log-likelihood loss for each output by computing the log probability of the true labels with respect to the output distributions. As mentioned in Section 4.3, the output sequences may contain masking values that need to be adjusted. Specifically, we marginalize out the components with the masking values. Formally, for a given training sample, let 𝑀 denote the masking constant, 𝑌=(𝑌1,…,𝑌11) denote a single output sequence, 𝑌𝒯𝑀=(𝑌𝑖:𝑌𝑖=𝑀), and, abusing notation, also let 𝒯𝑀={𝑖:𝑌𝑖=𝑀}. Then,
	𝑓𝑌\𝑌𝒯𝑀(𝑌)=𝑌𝒯𝑀​𝑓(𝑌)𝑑𝑌𝒯𝑀=𝑌𝒯𝑀​𝑓(𝑌\𝑌𝒯𝑀,𝑌𝒯𝑀)𝑑𝑌𝒯𝑀=𝑓𝑌\𝑌𝒯𝑀(𝑌\𝑌𝒯𝑀)𝑌𝒯𝑀​𝑓𝑌𝒯𝑀(𝑌𝒯𝑀)𝑑𝑌𝒯𝑀 (by independence)=𝑓𝑌\𝑌𝒯𝑀(𝑌\𝑌𝒯𝑀)=𝑖∉𝒯𝑀​𝑓𝑌𝑖(𝑌𝑖) (by independence).
	The adjusted log-likelihood for a single training sample then becomes
	logℒ(𝑌)=log𝑓𝑌\𝑌𝒯𝑀(𝑌)=log𝑖∉𝒯𝑀​𝑓𝑌𝑖(𝑌𝑖)=𝑖=1𝑇log𝑓𝑌𝑖(𝑌𝑖),
	where 𝑇 is min𝒯𝑀−1 if 𝒯𝑀 is nonempty and 11 otherwise.
	Hence, the log-likelihood associated with a training sample is the sum of the log probabilities of the non-masked elements. The negative log-likelihood, summed with the KL term associated with the variational layers, discussed in Section 3.2, comprise the total network loss for optimization. The contribution of a single training sample to the loss is then
	𝑖=1𝑇log𝑓𝑌𝑖(𝑌𝑖)+1𝒟𝑘=12𝐷𝐾𝐿(𝑞𝑘𝑤𝑘𝜃𝑘𝑃𝑘𝑤𝑘,  (19)
	where 𝑘=1,2 correspond to variational layers for parameterizing the paid loss and recovery distributions, respectively.
	Training and Scoring

	We use a random subset of the training set consisting of 5% of the records as the validation set for determining early stopping and scheduling the learning rate. For optimizing the neural network, we use stochastic gradient descent with an initial learning rate of 0.01 and a minibatch size of 100,000, and we halve the learning rate when there is no improvement in the validation loss for five epochs. Training is stopped early when the validation loss does not improve for ten epochs; we cap the maximum number of epochs at 100. Here, an epoch refers to a complete iteration through our training dataset, and the minibatch size refers to how many training samples we randomly sample for each gradient descent step.
	To forecast an individual claim, we construct a scoring data point by using all data available to us as of the evaluation date cutoff. In other words, the last elements of the predictor cash flow sequences correspond to the actual value from the cutoff year. Hence, in the output sequence, the first element corresponds to the prediction of the cash flow distribution of the year after the cutoff.
	Recall that our model weights are a random variable, so each time we score a new data point, we are sampling from the distribution of model weights and expect to obtain different parameters for the distributions of cash flows. The output distributions themselves are also stochastic and can be sampled from. Following (Kendall and Gal 2017), we refer to the former variability as epistemic uncertainty and the latter as aleatoric uncertainty. Epistemic uncertainty reflects uncertainty about our model which can be reduced given more training data, while aleatoric uncertainty reflects the irreducible noise in the observations. In actuarial science literature, these concepts are also known as parameter estimation uncertainty and process uncertainty, respectively (Wuthrich 2017).
	Generating a distribution of future paths of cash flows amounts to repeating the procedure of drawing a model from its distribution, calculating the output distribution parameters using the drawn model, then drawing a sample of cash flows from the distribution. Since we decompose the cash flows into paid losses and recoveries, we can obtain net amounts by subtracting the generated recoveries from the generated paid losses.
	If we were only interested in point estimates, we can avoid sampling the output distributions and simply compute their means, since given the model weights we have closed form expressions for the distributions given by Equation (15). Note that we would still have to sample the model weights.
	Results and Discussion
	We evaluate our modeling framework by qualitatively inspecting samples paths generated for an individual claim and also comparing the aggregate estimate of unpaid claims with a chain ladder estimate. We note that, to the best of our knowledge, prior to the current paper, there is not a benchmark for individual claims forecasts. We also discuss the extensibility of our approach to accommodate company specific data elements and expert knowledge.
	Individual Claim Forecasts

	Figure 3 shows various posterior densities, obtained by sampling the model weights 1,000 times, of parameters for the output distributions of a single claim. Our model assigns a higher probability of payment in the next year along with more variability around that probability. It can be seen that the expected probability of a payment decreases as we forecast further into the future. Given that a loss payment occurs, we see from the middle and bottom plots that both the expected value and the variability for both the mean and variance of the log-normal distributions increase with time. In other words, for this particular claim, loss payments become less likely as time goes on, but if they occur, they tend to be more severe and the model is less certain about the severity distribution.
	/
	Figure 3. Posterior distributions for a single claim at development year 4. (Top) Payment probability. (Middle) Mean of loss payment distribution. (Bottom) Log variance of payment distribution.

	/
	Figure 4. 1,000 samples of cumulative cash flow paths for a single claim. The training data includes development year 4 and the predictions begin in development year 5.

	In Figure 4 we show plausible future developments of the claim. Note that one thousand samples are drawn, so the handful of scenarios that present large payments represents a small portion of the paths, which is consistent with the distributions of parameters we see above.
	Aggregate estimates

	To compute a point estimate for the total unpaid losses, we score each claim once (i.e., sample from the weights distribution once) to obtain a distribution for each time step for paid losses and recoveries. We then compute the means of the paid loss and recovery distributions and take the differences to obtain the net cash flow amount. The final unpaid loss estimate is then the sum of all the net amounts up to and including development year 11. Since there is randomness in the neural network weight initialization, we instantiate and train the model 10 times, and take the average of the predicted future paid losses across the 10-model ensemble. In practice, one could distribute the prediction procedure over a computing cluster and draw more samples for an even more stable estimate.
	For the chain ladder development method benchmark, we aggregate the data into a report year triangle (to exclude IBNR), calculate ultimate losses using all-year weighted age-to-age factors, then subtract the already paid amounts to arrive at the unpaid estimate. The unpaid amounts from the two approaches are then compared to the actual unpaid amounts. The results are shown in Table 2.
	Model
	Forecast
	Error
	Actual
	109,216,388
	–
	Chain Ladder
	108,040,572
	−1.08%
	Ours (10-Model Ensemble)
	102,502,710
	−6.15%
	Table 2: Aggregate forecast results.

	While we are not improving on chain ladder estimates at the aggregate level for this particular simulated dataset, our approach is able to provide individual claims forecasts, which are interesting in their own right.
	Extensibility

	One of the primary advantages of neural networks is their flexibility. Considering the architecture described in Section 4.4, we can include additional predictors by appending additional input layers. These inputs can be unstructured, and we can leverage appropriate techniques to process them before combining with the existing features. For example, we may utilize convolutional layers to transform image inputs and recurrent layers to transform audio or text inputs.
	The forms of the output distributions can also be customized. We choose a log-normal mixture for our dataset, but depending on the specific book of business, one may want to specify a different distribution, such as a Gamma or a Gaussian. As we have done in constraining the scale parameter of the log-normal distribution, the modeler also has the ability to bound or fix specific parameters as situations call for them.
	Conclusion
	We have introduced a framework for individual claims forecasting that can be utilized in loss reserving. By leveraging Bayesian neural networks and stochastic output layers, our approach provides ways to learn uncertainty from the data. It is also able to produce cash flow estimates for multiple future time periods. Experiments confirm that the approach gives reasonable results and provides a viable candidate for future work on individual claims forecasting to benchmark against.
	There are a few potential avenues for enhancements and extensions, including larger scale simulations to evaluate the quality of uncertainty estimates, evaluating against new datasets, and relaxing simplifying assumptions, such as the independence of time steps to obtain more internally consistent forecasts. One main limitation of the proposed approach and experiments is that we focus on reported claims only. With access to policy level data, a particularly interesting direction of research would be to extend the approach to also estimate IBNR claims.
	Acknowledgments
	We thank Sigrid Keydana, Daniel Falbel, Mario Wüthrich, and volunteers from the Casualty Actuarial Society (CAS) for helpful discussions. This work is supported by the CAS.
	References
	Abadi, Martı́n, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, et al. 2015. “TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.” https://www.tensorflow.org/.
	Antonio, Katrien, and Richard Plat. 2014. “Micro-Level Stochastic Loss Reserving for General Insurance.” Scandinavian Actuarial Journal 2014 (7):649–69.
	Baudry, Maximilien, and Christian Y. Robert. n.d. “A Machine Learning Approach for Individual Claims Reserving in Insurance.” Applied Stochastic Models in Business and Industry.
	Bishop, Christopher M. 1994. “Mixture Density Networks.”
	Blundell, Charles, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. 2015. “Weight Uncertainty in Neural Networks.” arXiv:1505.05424 [Cs, Stat], May. http://arxiv.org/abs/1505.05424.
	Boumezoued, Alexandre, and Laurent Devineau. 2017. “Individual Claims Reserving: A Survey.”
	Duval, Francis, and Mathieu Pigeon. 2019. “Individual Loss Reserving Using a Gradient Boosting-Based Approach.” Risks 7 (3):79. https://doi.org/10.3390/risks7030079.
	Gabrielli, Andrea. 2019. “A Neural Network Boosted Double over-Dispersed Poisson Claims Reserving Model.” SSRN Scholarly Paper ID 3365517. Rochester, NY: Social Science Research Network.
	Gabrielli, Andrea, Ronald Richman, and Mario V. Wüthrich. 2019. “Neural Network Embedding of the over-Dispersed Poisson Reserving Model.” Scandinavian Actuarial Journal, 1–29.
	Gabrielli, Andrea, and Mario V Wüthrich. 2018. “An Individual Claims History Simulation Machine.” Risks 6 (2):29.
	Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT press.
	Graves, Alex. 2011. “Practical Variational Inference for Neural Networks.” In Advances in Neural Information Processing Systems, 2348–56.
	Guo, Cheng, and Felix Berkhahn. 2016. “Entity Embeddings of Categorical Variables.” arXiv Preprint arXiv:1604.06737.
	Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. “Long Short-Term Memory.” Neural Computation 9 (8):1735–80.
	Kendall, Alex, and Yarin Gal. 2017. “What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?” In Advances in Neural Information Processing Systems, 5574–84.
	Kuo, Kevin. 2019. “DeepTriangle: A Deep Learning Approach to Loss Reserving.” Risks 7 (3):97.
	LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. “Deep Learning.” Nature 521 (7553):436.
	Lopez, Olivier, Xavier Milhaud, and Pierre-E. Thérond. 2019. “A Tree-Based Algorithm Adapted to Microlevel Reserving and Long Development Claims.” ASTIN Bulletin: The Journal of the IAA, 1–22.
	Neal, Radford M. 2012. Bayesian Learning for Neural Networks. Springer Science & Business Media.
	Pigeon, Mathieu, Katrien Antonio, and Michel Denuit. 2013. “Individual Loss Reserving with the Multivariate Skew Normal Framework.” ASTIN Bulletin: The Journal of the IAA 43 (3):399–428.
	———. 2014. “Individual Loss Reserving Using PaidIncurred Data.” Insurance: Mathematics and Economics 58:121–31.
	R Development Core Team, RFFSC. 2011. R: A Language and Environment for Statistical Computing. R foundation for statistical computing Vienna, Austria.
	Taylor, Greg. 2019. “Loss Reserving Models: Granular and Machine Learning Forms.” Risks 7 (3):82.
	Wuthrich, Mario V. 2017. “Non-Life Insurance: Mathematics & Statistics.” Available at SSRN 2319328.
	Wüthrich, Mario V. 2018a. “Machine Learning in Individual Claims Reserving.” Scandinavian Actuarial Journal 2018 (6):465–80.
	———. 2018b. “Neural Networks Applied to ChainLadder Reserving.” European Actuarial Journal 8 (2):407–36.
	Word Bookmarks
	introduction
	related-work
	preliminaries
	the-loss-reserving-problem
	bnn
	mdn
	data-and-model
	data
	experiment-setup
	fe
	claims-forecasting-model
	embedding-layer
	long-short-term-memory
	dense-variational-layer
	outputdist
	loss-function
	training-and-scoring
	results-and-discussion
	individual-claim-forecasts
	aggregate-estimates
	extensibility
	conclusion
	acknowledgments
	references
	ref-tensorflow2015-whitepaper
	refs
	ref-antonioMicrolevelStochastic2014
	ref-baudryMachineLearning
	ref-bishopMixtureDensity1994
	ref-blundellWeightUncertainty2015
	ref-boumezouedIndividualClaims2017
	ref-duvalIndividualLoss2019
	ref-gabrielliNeuralNetwork2019
	ref-gabrielliNeuralNetwork2019a
	ref-gabrielliIndividualClaims2018
	ref-goodfellowDeepLearning2016
	ref-gravesPracticalVariational2011
	ref-guoEntityEmbeddings2016
	ref-hochreiterLongShortterm1997
	ref-kendallWhatUncertainties2017
	ref-kuo2019deeptriangle
	ref-lecunDeepLearning2015
	ref-lopezTreeBasedAlgorithm2019
	ref-nealBayesianLearning2012
	ref-pigeonIndividualLoss2013
	ref-pigeonIndividualLoss2014
	X553e407cb6983ecac3e1fa8528d0d72f358e6d3
	ref-taylorLossReserving2019
	ref-wuthrichNonlifeInsurance2017
	ref-wuthrichMachineLearning2018
	ref-wuthrichNeuralNetworks2018

