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Abstract

Finding a parametric model that fits loss data well
is often difficult. This paper offers an alternative—the
semiparametric mixed exponential distribution. The pa-
per gives the reason why this is a good model and ex-
plains maximum likelihood estimation for the mixed ex-
ponential distribution. The paper also presents an al-
gorithm to find parameter estimates and gives an illus-
trative example. The paper compares variances of esti-
mates obtained with the mixed exponential distribution
with variances obtained with a traditional parametric
distribution. Finally, the paper discusses adjustments to
the model and other uses of the model.

1. INTRODUCTION

Loss distributions have been a staple of actuarial work for
many years. The Casualty Actuarial Society syllabus has in-
cluded a separate section on the subject since 1985, the year
after Hogg and Klugman [5] published Loss Distributions. This
was the standard actuarial text on the subject until the recent
book by Klugman, Panjer, and Willmot [8], Loss Models: From
Data to Decisions, replaced it. Over the years, numerous authors
have published papers dealing with loss distributions. The two
books and most papers on the subject emphasize the use of para-
metric distributions as models for losses. I have found that the
set of distributions generally suggested for use is not adequate.
Too often, one cannot find a model that fits a data set well. Non-
parametric procedures are available, but although they usually
produce a good fit to the data, they often do not smooth the data
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enough.1 In this paper, I offer an alternative—the semiparametric
mixed exponential distribution.

Statisticians have done quite a bit of work with semiparamet-
ric mixture models. Lindsay and Lesperance [12] wrote in their
1995 review of semiparametric mixture models, “There has been
a surge of interest in semiparametric mixture models in recent
years, as statisticians strive to maintain the efficiencies of para-
metric methods while incorporating minimal assumptions in their
models.”2 I will first explain why the mixed exponential distri-
bution is a good model for losses. I will then discuss the theory
underlying maximum likelihood estimation with the mixed expo-
nential distribution. Much of this material has been developed in
the statistics literature, but I will highlight the relevant parts of it.
Next, I will present an algorithm based on Newton’s method to
find the maximum likelihood parameter estimates. I will follow
with an example of the application of this algorithm to a data set
from Klugman, Panjer, and Willmot [8] and with a comparison
of the variances of estimates obtained from a mixed exponential
distribution and a Pareto distribution, which serves as an exam-
ple of a traditional parametric distribution. I will then address
adjustments that may be necessary when using the mixed expo-
nential distribution, with particular emphasis on how to handle
the tail. Finally, I will briefly mention that the mixed exponential
distribution is useful for more than just modeling losses.

I will not discuss how to account for loss development before
fitting a distribution to a set of data. The actuarial literature has
not adequately addressed this very important issue, but it is be-
yond the scope of this paper. Also, I will assume that all data
analyzed has received appropriate trending.

1Although Klugman, Panjer, and Willmot [8] focus primarily on parametric procedures,
they do briefly cover nonparametric procedures in Section 2.11.1.
2Lindsay [11] has also written a monograph summarizing much of the recent work in
mixture models.
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2. MOTIVATION

When working with a set of loss data, we usually want to
estimate the underlying probability distribution that describes
the process that generated the data. It is generally a plausible
assumption that this distribution is reasonably smooth. Thus,
smoothing out the data should give a better estimate than sim-
ply using the empirical distribution itself. To accomplish such
smoothing, we may turn to either parametric or nonparametric
procedures. However, a parametric procedure often produces a
distribution that does not fit the data well, whereas a nonpara-
metric procedure often produces a distribution that is not smooth
enough. What we need is something in between a parametric and
a nonparametric procedure—a procedure that will provide a dis-
tribution that fits the data well, yet still provides an appropriate
amount of smoothing.

We can articulate the amount of smoothing we would like by
specifying conditions that the derivatives of the survival func-
tion, S(x), should satisfy (where x is the loss size).3 First, note
that S!(x) ="f(x), where f(x) is the probability density func-
tion. Clearly, f(x) must not be negative, so we should require
that S!(x)# 0. Next, we would like f(x) to be decreasing, so
we require that S!!(x)$ 0. Beyond that, we would like f(x) to
decrease at a decreasing rate, so we require that S!!!(x)# 0. In
general, we would like the derivatives of the survival function to
change at a slower and slower rate as the loss size x gets larger
and larger and to approach zero asymptotically as x approaches
infinity.4 The mathematical formulation of this requirement is
that the survival function should possess derivatives of all orders

3The survival function equals one minus the cumulative distribution function. Working
with the survival function is more convenient than working with the cumulative distri-
bution function.
4These conditions are appropriate for most loss distributions encountered in practice,
except perhaps where the loss size x is small. In particular, these conditions are not
compatible with a probability density function with a nonzero mode. However, we are
assuming that we are not particularly interested in the behavior of the survival function
where x is small.
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such that
("1)nS(n)(x)$ 0, x > 0:

Functions with this alternating derivative property are known
as completely monotone functions. There is a beautiful theorem
due to Bernstein (1928) which states that a function S on [0,%]
is completely monotone if and only if it is of the form

S(x) =
! %

0
e"¸xw(¸)d¸,

where w is nonnegative. Since we are interested in cases where
S is a survival function, we will restrict attention to cases where
S(0) = 1. This requirement forces w to be a probability function
(that may be discrete, continuous, or a combination of the two).5

In other words, any distribution with the alternating derivative
property must be a mixture of exponential distributions, and vice
versa.6

From now on, I will use a discrete formulation of the mixing
distribution w, because as will become clear, we usually deal
with mixing distributions that are nonzero at a small number of
points. Thus, we have

S(x) =
n"
i=1

wie
"¸ix, wi > 0,

n"
i=1

wi = 1,

where wi is the mixing weight corresponding to ¸i. Note that the
mean of the ith component distribution of the mixture is 1=¸i.

One of the distinguishing characteristics of the mixed expo-
nential distribution is that it always has a decreasing failure rate.
The failure rate is the probability density function divided by the

5Another way of stating this is that S is completely monotone with S(0) = 1 if and only
if it is the Laplace transform of a probability distribution w. See Feller [3, p. 439] for a
proof.
6I would like to thank Glenn Meyers for pointing out this equivalence relation, with which
he had become familiar through the work of Brockett and Golden [2]. They applied this
relation to utility functions just as this paper applies it to loss distributions.
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survival function.7 For the mixed exponential distribution, the
failure rate is

n"
i=1

#$$$$$%
wie

"¸ix
n"
j=1

wje
"¸jx

&'''''(¸i:

This is a weighted average of the ¸i’s. As x becomes larger,
weight moves away from the larger ¸i’s and toward the smaller
¸i’s, thus decreasing the failure rate.

Most of the parametric distributions traditionally used to
model losses have decreasing failure rates, either throughout the
entire distribution or at all but small loss sizes. Some are spe-
cial cases of the mixed exponential distribution. For example,
the Pareto distribution is a mixture of exponential distributions
with a gamma mixing distribution. See Appendix A for further
discussion of this topic. The advantage that the mixed exponen-
tial distribution enjoys over parametric distributions is that the
mixed exponential distribution is more general and thus likely
to provide a better fit to the data while still providing an ap-
propriate amount of smoothing. It is considered semiparametric
because no parametric assumption is made about the form of the
mixing distribution. We now turn to the problem of estimating
the mixing distribution from a given set of data.

3. MAXIMUM LIKELIHOOD THEORY

Maximum likelihood estimation is the only estimation tech-
nique I will cover in this paper. Although other techniques are
available, the well-known desirable statistical properties of maxi-
mum likelihood estimation usually make it the method of choice.

7See Section 2.7.2 of Klugman, Panjer, and Willmot [8] for a discussion of failure rates.
The failure rate is also known as the hazard rate or the force of mortality. In the context
of a loss distribution, “failure” means “loss stoppage.” A distribution with a decreasing
failure rate has an increasing mean residual lifetime (if it exists).
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In this section, I will describe the properties underlying maxi-
mum likelihood estimation with the mixed exponential distribu-
tion. The proofs are in Appendix B.

I will begin by addressing the situation where no grouping,
censoring, or truncation is present in the data. The loglikelihood
function is

lnL(w1,w2, : : :) =
m"
k=1

lnf(xk) =
m"
k=1

ln

) %"
i=1

wi¸ie
"¸ixk

*
,

where m is the number of observations. We must find the set
of wi’s that maximizes the loglikelihood function, subject to the
constraints that each of the wi’s must be greater than or equal to
zero and the sum of the wi’s must be one. We consider the ¸i’s
fixed and arbitrarily close together.

This constrained maximum occurs at the unique point at
which the following conditions, known as the Karush–Kuhn–
Tucker (KKT) conditions, are satisfied:

@ lnL
@wi

=
m"
k=1

¸ie
"¸ixk

%"
j=1

wj¸je
"¸jxk

#m, if wi = 0

and
@ lnL
@wi

=
m"
k=1

¸ie
"¸ixk

%"
j=1

wj¸je
"¸jxk

=m, if wi > 0:

The inequality conditions ensure that we cannot increase the log-
likelihood by moving a small amount of weight to a ¸i that has
zero weight attached to it. The equality conditions ensure that
we cannot increase the loglikelihood by moving weight around
among the ¸i’s that have positive weight attached to them. The
number of positive wi’s at this maximum is at most m. None of
the corresponding ¸i’s can be less than 1=xm, where xm is the
largest observation, and none can be greater than 1=x1, where x1
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is the smallest observation. The number of positive wi’s tends to
increase with the number of observations, but remains below ten
in most practical situations.

For grouped data, the loglikelihood function is

lnL(w1,w2, : : :) = a1ln (1" S(b1))+
g"1"
k=2

akln (S(bk"1)" S(bk))

+ agln(S(bg"1))

= a1ln

) %"
i=1

wi(1" e"¸ib1)
*

+
g"1"
k=2

akln

) %"
i=1

wi(e
"¸ibk"1 " e"¸ibk )

*

+ agln

) %"
i=1

wi(e
"¸ibg"1)

*
,

where g is the number of groups, a1, : : : ,ag are the number of
observations in each group, and b1, : : : ,bg"1 are the group bound-
aries. We will assume that any adjacent groups that all have zero
observations have been combined into one group.

In this case, the KKT conditions are

@ lnL
@wi

= a1
1" e"¸ib1

%"
j=1

wj(1" e"¸jb1)
+
g"1"
k=2

ak
e"¸ibk"1 " e"¸ibk

%"
j=1

wj(e
"¸jbk"1 " e"¸jbk )

+ ag
e"¸ibg"1

%"
j=1

wj(e
"¸jbg"1)

#m, if wi = 0
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and

@ lnL
@wi

= a1
1" e"¸ib1

%"
j=1

wj(1" e"¸jb1)
+
g"1"
k=2

ak
e"¸ibk"1 " e"¸ibk

%"
j=1

wj(e
"¸jbk"1 " e"¸jbk )

+ ag
e"¸ibg"1

%"
j=1

wj(e
"¸jbg"1)

=m, if wi > 0:

The constrained maximum will occur at a unique point, unless
the mixed exponential probabilities for each group are exactly
proportional to the number of observations in each group or, in
other words, when the data perfectly fits the model. For this situ-
ation, we can easily come up with examples where an arbitrarily
large number of different mixed exponential distributions, each
with an arbitrarily large number of positive wi’s, will maximize
the loglikelihood function. However, a perfect fit is highly un-
likely unless the number of groups is very small.

When the fit is not perfect, the number of positive wi’s with
corresponding ¸i’s on (0,%) at the maximum is at most g=2"1
if g is even and g=2"1=2 if g is odd. In addition to the ¸i’s
on (0,%), there may also be ¸i’s at zero or infinity (or both)
that have positive wi’s. For an exponential distribution with a ¸i
of zero (and thus a mean of infinity), the survival function is a
constant function of 1. In actuarial terms, the wi corresponding
to a ¸i of zero would indicate the probability that a loss will
completely exhaust all layers of coverage, no matter how high.
For an exponential distribution with a ¸i of infinity (and thus
a mean of zero), the survival function is a constant function of
0. The wi corresponding to a ¸i of infinity would indicate the
probability that a loss will be zero. The number of positive wi’s
tends to increase with the number of groups, but remains below
ten in most practical situations.
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The development for grouped data applies also to censored
grouped data, since the censored data is simply in the last group
with an upper bound of infinity. For other situations, such as
censored ungrouped data (thus partially grouped and partially
ungrouped) or data censored at various points or grouped with
various boundaries, the logic is similar to that used above, since
we can simply sum the appropriate loglikelihood functions.

With ungrouped data truncated (but not shifted) by a de-
ductible d, the loglikelihood function is

lnL(w1,w2, : : :) =
m"
k=1

ln
+
f(xk)
S(d)

,
=

m"
k=1

ln

#$$$$$%
%"
i=1

wi¸ie
"¸ixk

%"
j=1

wje
"¸jd

&'''''(
=

m"
k=1

ln

) %"
i=1

w&i ¸ie
"¸i(xk"d)

*
,

where

w&i =
wie

"¸id
%"
j=1

wje
"¸jd

:

We can thus convert the problem to a problem without a de-
ductible by subtracting d from each observation. We can then
recover the wi’s using the formula

wi =
w&i e

¸id

%"
j=1

w&j e
¸jd

:

The same process applies for grouped data with d subtracted
from each of the group boundaries instead of the observations.
However, the formula to recover the wi’s breaks down if one of
the ¸i’s with a positive w

&
i is infinity, as quite often occurs with
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grouped data. Using the fitted mixed exponential distribution to
extrapolate below a deductible is not a good idea.

If a set of data contains several different deductibles, we can
subtract the smallest deductible for which a credible amount of
data exists from each observation and the higher deductibles. We
would have to subtract additional terms from the loglikelihood
function to account for these higher deductibles.8

4. A MAXIMUM LIKELIHOOD ALGORITHM

I will now present an algorithm that we can use to find the
maximum likelihood estimates of the parameters of a mixed ex-
ponential distribution. I have based the algorithm on Newton’s
method, the details of which are in any textbook on numerical
analysis. After I present the algorithm, I will comment on alter-
natives to it. The steps of the algorithm are:

1. Begin with an initial set of positive wi’s and the ¸i’s as-
sociated with them. The closer these are to the final es-
timated values, the faster the convergence will be. How-
ever, the algorithm will converge regardless of what the
initial values are.

2. Assume that the number of parameters is fixed and use
Newton’s method to find the indicated change in the
parameters. I will call this the Newton step. Each ¸i is a
parameter, and all but one of the wi’s are parameters. We
must set the remaining wi equal to one minus the sum
of the others. Appendix C shows the derivatives needed
to find the Newton step.

3. Adjust the parameters by the amount of the Newton step.
If all the ¸i’s remain positive, if all the wi’s remain be-
tween zero and one, and if the loglikelihood function

8See Section 2.10 of Klugman, Panjer, and Willmot [8] for a discussion of estimation
with incomplete data.
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increases, then go to step 4. If the result does not satisfy
all these conditions, then try a backward Newton step,
then half a forward step, then half a backward step, then
a quarter of a forward step, and so on until the result
satisfies all the conditions.

4. If one of the ¸i’s is approaching zero or infinity (which
can happen only with grouped or censored data), go to
step 5. If one of the wi’s is approaching zero, go to step
6. If the Newton step is very small, thus indicating con-
vergence, go to step 7. Otherwise, go back to step 2.

5. If one of the ¸i’s is approaching zero, then fix that ¸i
at a very small value, so it is effectively zero. If one of
the ¸i’s is approaching infinity, then fix that ¸i at a very
large value, so it is effectively infinity. Remove the fixed
¸i, but not its associated wi, from the Newton iterative
process. Go back to step 2.

6. If one of the wi’s is approaching zero, then adjust the
parameters by the proportion of the Newton step that
makes this wi exactly zero. Remove it and its associated
¸i as parameters. Often, this ¸i will be approaching one
of the other ¸i’s. If the eliminated wi was close enough
to zero, its removal should result in an increase in the
loglikelihood function. Go back to step 2.

7. If convergence has occurred, then check to see if the
result satisfies the KKT conditions. To do this, check
the conditions for ¸i’s close enough together so that it
is clear that if the result satisfies the conditions at the
checked ¸i’s, the result will also satisfy the conditions
at all others in between. If the result satisfies the KKT
conditions, then the loglikelihood function has reached
its maximum. If the result does not satisfy the conditions,
go to step 8.

8. If the result does not satisfy the KKT conditions, then
add an additional ¸i and associated wi as parameters.
The new ¸i should be in the vicinity of where the KKT
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function is the largest (and thus where a new ¸i is most
needed). Give the new wi a small positive value and pro-
portionately decrease the other wi’s so the sum of the
wi’s remains at 1. The value assigned to the new wi
should be small enough so that the loglikelihood func-
tion increases from its previous value. (The algorithm
will work regardless of the values of the new ¸i and wi
as long as the loglikelihood function increases from its
previous value. If it does not increase, the algorithm may
lead right back to the point where it was before the new
¸i and wi were added.) Go back to step 2.

This algorithm will always converge to the maximum likelihood
estimates of the parameters, because the loglikelihood function
is concave and its value is increasing with each step of the al-
gorithm. The points where Newton’s method converges but the
result does not satisfy the KKT conditions correspond to local
maxima with the number of ¸i’s fixed at a specified number.
When the result satisfies the KKT conditions, we have reached
the global maximum, with no restriction on the number of ¸i’s.

With ungrouped data, the fitted mixed exponential mean will
always equal the sample mean. This applies at both the global
maximum and local maxima with a fixed number of ¸i’s. Also,
with ungrouped data, the fitted mixed exponential variance will
not be less than the sample variance. This applies only at the
global maximum. Appendix C gives the proofs of these state-
ments. With grouped data, these relationships cannot hold, be-
cause the values of the individual observations are not available.

The variance relationship for ungrouped data results from the
smoothing effect of the mixed exponential distribution. Probabil-
ity from the sample values is effectively spread to surrounding
values where no data was observed, thus increasing the variance.
Though this produces an upward bias in the variance of the fit-
ted distribution, it reduces the variance of the estimates of the
survival probabilities produced by the fitted distribution, as we
will see in Section 6.
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This variance relationship also holds for nonparametric
smoothing procedures. For parametric distributions, the fitted
variance can be either larger or smaller than the sample vari-
ance, depending on the particular sample. For both the mixed
exponential distribution and parametric distributions, as long as
the variance of the actual distribution is finite, the ratio of the
fitted variance to the sample variance will approach 1 as the sam-
ple size goes to infinity, since both will converge to the actual
variance of the distribution. If the variance of the actual distri-
bution is infinite, this will be true for the distribution censored
at any point.

The given algorithm is certainly not the only one that can be
used to maximize the loglikelihood function. I presented it be-
cause Newton’s method is well-known and it converges very fast
once the parameters are in the vicinity of the solution. Step 3 of
the algorithm, trying successively smaller forward and backward
Newton steps until the loglikelihood increases, is not elegant, but
it does work. One could certainly improve the efficiency of the
algorithm, but with the ample computing power now available,
any improvements would probably be of marginal benefit in most
cases.9

One could use a “canned” optimization program (which may
use Newton’s method with approximations of the derivatives) to
maximize the loglikelihood function. Such programs can work
well, but one must take care to ensure that the program does
not stop before reaching the solution. Also, since the ¸i’s are
generally of very different magnitudes, a scaling adjustment may
be helpful.

5. AN EXAMPLE

I will now illustrate how the algorithm works. I will use some
grouped general liability data taken from Table 2.27 of Klugman,

9Bohning [1] reviewed several maximum likelihood algorithms that have been proposed
for use with semiparametric mixture models.
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Panjer, and Willmot [8]. The first three columns of Table 1 show
the data. The loss amounts shown are the group boundaries.

We begin by fixing the number of means at one (though we
need not begin with one). Instead of referring to the ¸i’s as-
sociated with a mixed exponential distribution, throughout this
example I will refer to the means (the reciprocals of the ¸i’s).
Regardless of the initial value we select, we will obtain rapid
convergence to a mean of 51,190. The second column of Table
2 shows this result. The third column shows the value of the
KKT function

h(¸) = a1
1" e"¸b1

%"
j=1

wj(1" e"¸jb1)
+
g"1"
k=2

ak
e"¸bk"1 " e"¸bk

%"
j=1

wj(e
"¸jbk"1 " e"¸jbk )

+ ag
e"¸bg"1

%"
j=1

wj(e
"¸jbg"1 )

for a number of means. As it must, h(¸) has a value of 336 (the
number of observations) at 51,190, but the function is larger than
this everywhere else. Thus, we have not reached the maximum.

Since h(¸) is largest at large means, we move a small amount
of weight to a large mean. The actual value of this mean or the
amount of weight we place on it is not important as long as
the loglikelihood increases. With two means, the algorithm con-
verges to means of 13,570 and 176,638 with weights of 0.7566
and 0.2434, respectively. From Table 2, we see that we still have
not reached the maximum.

Since h(¸) is again largest at large means, we move a small
amount of weight to a large mean and proportionately scale back
the weights on the existing two means (checking to be sure that
the loglikelihood increases). With three means, the algorithm
converges to means of 10,598, 73,440, and 686,632 with weights
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TABLE 2

KARUSH–KUHN–TUCKER FUNCTION

One Mean Two Means Three Means Four Means

Mean=
1
¸

1
¸

h(¸) 1
¸

h(¸) 1
¸

h(¸) 1
¸

h(¸)

0 336.000
1,000 1173.337 432.190 396.167 335.881
2,000 1060.099 402.882 373.030 334.870
3,000 968.445 381.032 356.735 333.555
4,000 898.142 366.497 347.053 333.025
5,000 842.334 356.811 341.618 333.218
6,000 796.360 350.199 338.684 333.773
7,000 757.342 345.567 337.168 334.415
8,000 723.472 342.262 336.435 334.993
9,000 693.574 339.891 336.118 335.442
10,000 666.848 338.213 336.012 335.748

10,598 336.000
12,336 336.000

13,570 336.000
20,000 496.647 340.263 336.150 335.188
30,000 410.371 353.183 336.079 334.770
40,000 360.872 363.845 336.007 335.056
50,000 336.444 369.889 335.970 335.455

51,190 336.000
60,000 389.835 371.973 335.979 335.775
70,000 971.560 371.194 335.998 335.958

73,440 336.000
77,922 336.000

80,000 3,995 368.495 335.992 335.997
90,000 14,647,843 364.604 335.944 335.915
100,000 43,187,502 360.067 335.856 335.745

176,638 336.000
200,000 6,191,258 338.944 334.801 333.922
300,000 32,692,464 414.348 334.964 334.227
400,000 75,160,236 558.705 335.441 335.019
500,000 123,867,653 729.785 335.788 335.598
600,000 172,830,341 903.455 335.960 335.903

686,632 336.000
700,000 219,258,668 1068.732 335.999 335.999

712,302 336.000
800,000 262,097,414 1221.452 335.950 335.956
900,000 301,125,152 1360.665 335.845 335.827

1,000,000 336,492,659 1486.842 335.708 335.645
2,000,000 554,645,524 2264.678 334.206 333.527
3,000,000 655,188,015 2622.692 333.230 332.125
4,000,000 712,101,357 2825.202 332.618 331.242
5,000,000 748,596,059 2955.002 332.205 330.645
6,000,000 773,959,261 3045.185 331.909 330.217
7,000,000 792,600,348 3111.454 331.688 329.896
8,000,000 806,875,259 3162.194 331.516 329.646
9,000,000 818,155,499 3202.285 331.378 329.447
10,000,000 827,293,145 3234.758 331.266 329.284
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of 0.6270, 0.3340, and 0.0390, respectively. Again, we have not
reached the maximum.

The KKT function is now largest below the first mean of
10,598. We move a small amount of weight to a small mean
and proportionately scale back the weights on the existing three
means. When we resume iterating, this smallest mean heads to-
ward zero. We then fix it at a small value (for example, 25, 1%
of the first group boundary). Effectively, we assign all the prob-
ability associated with this mean to the first group. We resume
iterating, and the algorithm converges to the values shown at the
top of Table 1. The table shows the first mean as zero, because
that is its true value. As the last column of Table 2 shows, the
KKT function now never exceeds 336. We have thus reached the
maximum likelihood estimates of the mixed exponential param-
eters.

Table 1 shows the fitted survival probabilities. The fitted and
empirical probabilities match exactly at the first group boundary.
This will always occur when a mean of zero has a positive weight
in the final parameter set, since this is the only way the KKT
function can be equal to the number of observations when ¸i
is infinity. Likewise, anytime a mean of infinity has a positive
weight in the final parameter set, the survival probabilities will
match exactly at the last group boundary.

If the data includes various deductibles, attachment points,
or policy limits, we can obtain the empirical distribution using
the Kaplan–Meier Product-Limit estimator. This estimator pro-
vides empirical survival probabilities that take into account the
effect of unobserved losses below deductibles and attachment
points as well as losses capped by policy limits. Klugman, Pan-
jer, and Willmot [8] cover this estimator briefly. It has histori-
cally been used extensively in survival analysis, and Klein and
Moeschberger [7] and London [14] cover the subject in more
detail.

For comparison, Table 1 also shows the fits for three distri-
butions other than the mixed exponential. The parameterizations
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of the transformed beta and the Pareto are the same as those that
Klugman, Panjer, and Willmot [8] use. See Appendix A for de-
tails. The lognormal parameterization is the standard one. The
transformed beta provides the best fit, as measured by the log-
likelihood, of the distributions used by Klugman, Panjer, and
Willmot [8]. The Pareto is a special case of both the mixed
exponential and the transformed beta. As expected, the mixed
exponential provides the best fit.

We would prefer the mixed exponential distribution if our hy-
pothesis is that the actual distribution has the alternating deriva-
tive property, which is a much weaker hypothesis than one that
states that the actual distribution follows a particular parametric
form. In most situations, I have found little or no justification
for a stronger parametric hypothesis.

The usual way to evaluate a hypothesis is to perform a test
such as the chi-square goodness-of-fit test. When the parameters
are estimated from the data, this test is not appropriate with the
mixed exponential distribution, since the mixed exponential does
not have a fixed number of parameters. However, with most loss
data I have encountered in practice, the appropriateness of the
mixed exponential will be evident from a comparison of the fitted
and empirical distributions.

For the other three distributions in Table 1, we can perform
chi-square goodness-of-fit tests. We will combine the last three
groups, and the two groups before the last three, so there are at
least five losses in each of the resulting 14 groups. The results
are as follows:

Chi-square Degrees of
Distribution Statistic Freedom p-value

Transformed Beta 9.24 9 0.41
Pareto 10.55 11 0.48

Lognormal 11.12 11 0.43
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Another way to evaluate the Pareto hypothesis would be to use
a likelihood ratio test. Since the Pareto distribution is a spe-
cial case of the transformed beta distribution, under the Pareto
hypothesis, twice the difference of the maximum values of
the loglikelihoods of the Pareto and transformed beta has ap-
proximately a chi-square distribution with two degrees of free-
dom (the difference in the number of parameters). In this case,
2' (("820:16)" ("820:78)) = 1:24, which yields a p-value of
0.54. Thus, the Pareto distribution would not be rejected in fa-
vor of the transformed beta distribution.10

In this example, none of the distributions shown in Table 1
would be rejected as possible models for the actual distribution.
However, as I mentioned above, hypothesizing a particular para-
metric distribution is dubious in most cases I have encountered.
In general, the larger the data set, the more evident this becomes.

6. VARIANCE

With parametric distributions, we can obtain the asymptotic
variances and covariances of the maximum likelihood estimators
of the parameters by calculating the covariance matrix. We can
then use the covariance matrix to find the asymptotic variances
of the maximum likelihood estimators of functions of the pa-
rameters that are of interest, such as survival probabilities and
limited expected values.11

This approach does not work with the semiparametric mixed
exponential distribution. Tierney and Lambert [16] obtained a
result that implies that the asymptotic variance of the maximum
likelihood estimator of a function of mixed exponential param-
eters is equal to the variance of the empirical estimator for un-
grouped data. For a survival probability, the empirical estimator
is the sample proportion of observations that exceeds the loss

10See Section 2.9 of Klugman, Panjer, and Willmot [8] for a more thorough discussion
of these tests.
11See Section 2.5 of Klugman, Panjer, and Willmot [8] for a discussion.
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amount under consideration. This has a binomial distribution that
approaches a normal distribution as the number of observations
approaches infinity. This result means that, asymptotically, we do
not reduce the variance of our survival probability estimates, or
any other estimates based on the mixed exponential parameters,
by using the fitted distribution instead of the empirical distribu-
tion.

In practice, we do not have infinite samples. To see what hap-
pens with finite samples, we must resort to simulation. Tables
3A, 3B, and 3C show the results of simulations using sample
sizes of 10, 50, and 250, respectively. In each case, the simu-
lated distribution is the Pareto distribution from Table 1. I used
a Pareto distribution to facilitate comparison of the variances of
estimates obtained using the mixed exponential distribution with
the variances of estimates obtained using the Pareto distribution.
The Pareto distribution serves as an example of a parametric dis-
tribution with a fixed number of parameters. These tables show
estimates of the bias and variance of survival probability esti-
mates based on 10,000 simulations, for a mixed exponential fit
without grouping the data, and both a mixed exponential and
a Pareto fit with data grouped using the boundaries from Table
1. The tables display bias as a percentage of the actual survival
probability, and variance as a ratio to the variance of the em-
pirical estimator. Table 3C also shows the asymptotic variance
for the Pareto distribution. I focus on the survival function be-
cause any other function of interest can be expressed in terms of
the survival function. For example, the limited expected value is
simply the integral of the survival function from zero to the limit
being considered.

The grouped mixed exponential results are close to the un-
grouped results in the middle of the distribution, but are dramat-
ically worse at small loss amounts and in the tail. The reason
for this is that the grouped data provides virtually no informa-
tion about the distribution either below the first group boundary
of 2,500 or above the last group boundary of 1,000,000. There-
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TABLE 3A

SIMULATION RESULTS—10 OBSERVATIONS

Ungrouped Grouped Grouped
Mixed Exponential Mixed Exponential Pareto

10 Times Ratio to Ratio to Ratio to
Survival Empirical Empirical Empirical Empirical

Loss Amt Probability Variance Bias Variance Bias Variance Bias Variance

10 0.9993 0.00073 "0:25% 1.09 "3:79% 85.35 "0:02% 0.05
100 0.9927 0.00722 "1:20% 0.79 "3:89% 8.34 "0:13% 0.12

1,000 0.9316 0.06376 "3:61% 0.56 "4:58% 0.94 "0:66% 0.37
2,500 0.8443 0.13142 "4:45% 0.56 "4:96% 0.64 "0:72% 0.54
7,500 0.6415 0.22999 "3:99% 0.64 "4:28% 0.65 0.36% 0.72
12,500 0.5155 0.24976 "3:15% 0.69 "3:37% 0.69 1.06% 0.79
17,500 0.4298 0.24508 "2:63% 0.72 "2:79% 0.72 1.14% 0.82
22,500 0.3680 0.23257 "2:40% 0.74 "2:49% 0.74 0.76% 0.83
32,500 0.2848 0.20368 "2:47% 0.75 "2:47% 0.76 "0:70% 0.82
47,500 0.2116 0.16683 "3:13% 0.75 "3:04% 0.75 "3:32% 0.79
67,500 0.1568 0.13219 "4:16% 0.73 "4:03% 0.74 "6:17% 0.74
87,500 0.1240 0.10863 "5:05% 0.71 "4:89% 0.72 "7:94% 0.70
125,000 0.0886 0.08075 "6:23% 0.68 "6:02% 0.68 "8:98% 0.64
175,000 0.0637 0.05968 "7:13% 0.65 "6:72% 0.65 "7:68% 0.61
225,000 0.0496 0.04710 "7:60% 0.63 "6:79% 0.64 "4:98% 0.59
325,000 0.0341 0.03290 "7:90% 0.61 "5:65% 0.63 1.75% 0.58
475,000 0.0230 0.02245 "7:66% 0.58 "1:60% 0.67 12.25% 0.58
675,000 0.0159 0.01564 "7:00% 0.56 6.94% 0.78 25.39% 0.59

1,000,000 0.0105 0.01038 "6:00% 0.54 26.22% 1.02 44.47% 0.61
2,000,000 0.0050 0.00499 "4:31% 0.51 108.32% 1.93 92.25% 0.68
3,000,000 0.0033 0.00324 "3:39% 0.51 205.80% 2.94 131.11% 0.75
5,000,000 0.0019 0.00188 "1:82% 0.51 417.16% 5.05 195.67% 0.85
10,000,000 0.0009 0.00089 2.63% 0.54 982.05% 10.63 321.95% 1.04
20,000,000 0.0004 0.00042 11.91% 0.60 2178.28% 22.38 514.73% 1.31
30,000,000 0.0003 0.00027 19.65% 0.65 3423.15% 34.60 672.44% 1.52
50,000,000 0.0002 0.00016 31.42% 0.69 6002.45% 59.92 937.99% 1.86
100,000,000 0.0001 0.00008 46.04% 0.72 12761.24% 126.28 1469.57% 2.47

10 (Sample Size) Times Empirical Variance

= 10 ( Surv Prob ( (1"Surv Prob)
10

= Surv Prob ( (1"Surv Prob)

Bias =
Average Simulated Fitted Survival Probability"Survival Probability

Survival Probability

Ratio to Empirical Variance

=
Variance of Simulated Fitted Survival Probabilities

Empirical Variance
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TABLE 3B

SIMULATION RESULTS—50 OBSERVATIONS

Ungrouped Grouped Grouped
Mixed Exponential Mixed Exponential Pareto

50 Times Ratio to Ratio to Ratio to
Survival Empirical Empirical Empirical Empirical

Loss Amt Probability Variance Bias Variance Bias Variance Bias Variance

10 0.9993 0.00073 "0:15% 0.87 "1:94% 98.53 0.00% 0.00
100 0.9927 0.00722 "0:59% 0.55 "1:95% 9.50 "0:02% 0.03

1,000 0.9316 0.06376 "1:45% 0.51 "1:98% 0.97 "0:10% 0.27
2,500 0.8443 0.13142 "1:50% 0.59 "1:75% 0.68 "0:09% 0.50
7,500 0.6415 0.22999 "0:63% 0.72 "0:73% 0.74 0.29% 0.75
12,500 0.5155 0.24976 "0:11% 0.77 "0:15% 0.78 0.57% 0.77
17,500 0.4298 0.24508 0.02% 0.79 0.04% 0.80 0.66% 0.75
22,500 0.3680 0.23257 "0:04% 0.80 0.01% 0.80 0.61% 0.73
32,500 0.2848 0.20368 "0:36% 0.80 "0:29% 0.81 0.27% 0.69
47,500 0.2116 0.16683 "0:83% 0.81 "0:75% 0.81 "0:42% 0.68
67,500 0.1568 0.13219 "1:22% 0.81 "1:15% 0.82 "1:22% 0.68
87,500 0.1240 0.10863 "1:46% 0.81 "1:40% 0.82 "1:76% 0.69
125,000 0.0886 0.08075 "1:85% 0.81 "1:85% 0.81 "2:21% 0.69
175,000 0.0637 0.05968 "2:40% 0.80 "2:56% 0.80 "2:09% 0.68
225,000 0.0496 0.04710 "2:97% 0.78 "3:29% 0.78 "1:57% 0.66
325,000 0.0341 0.03290 "3:99% 0.76 "4:27% 0.75 "0:03% 0.62
475,000 0.0230 0.02245 "5:12% 0.72 "3:80% 0.74 2.58% 0.57
675,000 0.0159 0.01564 "6:08% 0.69 0.28% 0.78 5.98% 0.52

1,000,000 0.0105 0.01038 "6:92% 0.65 12.80% 0.93 10.95% 0.47
2,000,000 0.0050 0.00499 "7:59% 0.60 71.75% 1.64 22.91% 0.40
3,000,000 0.0033 0.00324 "7:36% 0.57 143.09% 2.50 32.00% 0.36
5,000,000 0.0019 0.00188 "6:20% 0.56 301.35% 4.36 45.95% 0.31
10,000,000 0.0009 0.00089 "2:70% 0.55 733.42% 9.21 70.11% 0.27
20,000,000 0.0004 0.00042 2.41% 0.55 1653.60% 19.39 101.68% 0.23
30,000,000 0.0003 0.00027 5.82% 0.56 2611.72% 29.98 124.40% 0.21
50,000,000 0.0002 0.00016 10.34% 0.56 4596.97% 51.92 158.47% 0.19
100,000,000 0.0001 0.00008 15.23% 0.57 9799.13% 109.42 216.68% 0.17

50 (Sample Size) Times Empirical Variance

= 50 ( Surv Prob ( (1"Surv Prob)
50

= Surv Prob ( (1"Surv Prob)

Bias =
Average Simulated Fitted Survival Probability"Survival Probability

Survival Probability

Ratio to Empirical Variance

=
Variance of Simulated Fitted Survival Probabilities

Empirical Variance
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TABLE 3C

SIMULATION RESULTS—250 OBSERVATIONS

Grouped
Pareto

Ungrouped Grouped Grouped Asymptotic
Mixed Exponential Mixed Exponential Pareto Variance

250 Times Ratio to Ratio to Ratio to Ratio to
Survival Empirical Empirical Empirical Empirical Empirical

Loss Amt Probability Variance Bias Variance Bias Variance Bias Variance Variance

10 0.9993 0.00073 "0:08% 0.59 "1:06% 134.65 0.00% 0.00 0.00
100 0.9927 0.00722 "0:27% 0.40 "1:05% 12.75 0.00% 0.03 0.03

1,000 0.9316 0.06376 "0:58% 0.49 "0:92% 1.10 "0:04% 0.25 0.25
2,500 0.8443 0.13142 "0:48% 0.62 "0:64% 0.73 "0:06% 0.48 0.49
7,500 0.6415 0.22999 "0:03% 0.78 "0:06% 0.80 "0:05% 0.75 0.77
12,500 0.5155 0.24976 0.02% 0.82 0.02% 0.84 "0:03% 0.77 0.78
17,500 0.4298 0.24508 "0:12% 0.84 "0:11% 0.85 "0:05% 0.75 0.75
22,500 0.3680 0.23257 "0:29% 0.86 "0:28% 0.86 "0:08% 0.72 0.72
32,500 0.2848 0.20368 "0:52% 0.89 "0:52% 0.89 "0:18% 0.69 0.68
47,500 0.2116 0.16683 "0:60% 0.90 "0:61% 0.91 "0:34% 0.68 0.66
67,500 0.1568 0.13219 "0:55% 0.90 "0:55% 0.91 "0:51% 0.69 0.67
87,500 0.1240 0.10863 "0:54% 0.90 "0:50% 0.91 "0:63% 0.71 0.68
125,000 0.0886 0.08075 "0:66% 0.89 "0:57% 0.90 "0:74% 0.72 0.70
175,000 0.0637 0.05968 "0:91% 0.88 "0:83% 0.89 "0:75% 0.72 0.70
225,000 0.0496 0.04710 "1:14% 0.87 "1:13% 0.88 "0:67% 0.71 0.69
325,000 0.0341 0.03290 "1:52% 0.87 "1:61% 0.89 "0:39% 0.68 0.66
475,000 0.0230 0.02245 "1:94% 0.86 "1:73% 0.89 0.14% 0.62 0.60
675,000 0.0159 0.01564 "2:39% 0.85 "0:68% 0.88 0.86% 0.56 0.54

1,000,000 0.0105 0.01038 "3:04% 0.83 3.36% 0.96 1.94% 0.48 0.47
2,000,000 0.0050 0.00499 "4:61% 0.75 27.42% 1.78 4.60% 0.36 0.33
3,000,000 0.0033 0.00324 "5:63% 0.71 61.92% 2.85 6.62% 0.30 0.27
5,000,000 0.0019 0.00188 "6:62% 0.66 145.14% 5.12 9.66% 0.23 0.20
10,000,000 0.0009 0.00089 "6:62% 0.60 383.10% 11.02 14.73% 0.16 0.12
20,000,000 0.0004 0.00042 "5:55% 0.55 900.71% 23.32 20.95% 0.11 0.08
30,000,000 0.0003 0.00027 "4:78% 0.53 1442.30% 36.06 25.17% 0.09 0.06
50,000,000 0.0002 0.00016 "3:64% 0.51 2565.35% 62.44 31.15% 0.06 0.04
100,000,000 0.0001 0.00008 "2:43% 0.49 5508.39% 131.56 40.53% 0.04 0.02

250 (Sample Size) Times Empirical Variance

= 250 ( Surv Prob ( (1"Surv Prob)
250

= Surv Prob ( (1"Surv Prob)

Bias =
Average Simulated Fitted Survival Probability"Survival Probability

Survival Probability

Ratio to Empirical Variance

=
Variance of Simulated Fitted Survival Probabilities

Empirical Variance
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fore, the fitted distribution often contains means of either zero
or infinity or both.

Because the Pareto is less flexible than the mixed exponen-
tial, the Pareto usually provides survival probability estimates
with a smaller variance. This effect is most notable at small loss
amounts and in the tail. However, this fact illustrates the prob-
lem with using the Pareto or other parametric distributions with
a fixed number of parameters. If we knew that the actual distri-
bution were a Pareto, we would of course prefer to fit a Pareto
instead of a mixed exponential. However, the assumption that
the distribution is a Pareto is virtually never valid. If our data set
is small, the fit may appear to be good, but the tail is simply a
function of the assumption that the distribution is a Pareto. The
fitted tail may or may not be anywhere close to the actual tail.
If our data set is large, then unless we really do have a Pareto,
we will probably observe a poor fit in the tail because the Pareto
is not flexible enough. Thus, though the Pareto provides esti-
mates with smaller variance than the mixed exponential, these
estimates may be significantly biased if the actual distribution is
not a Pareto.

For the ungrouped mixed exponential, as the number of ob-
servations increases, the bias gradually disappears, and the ratio
of the variance to the empirical variance eventually approaches
1. This process takes longer at small loss amounts and in the
tail. For the grouped mixed exponential, the results are similar
except that outside the layer boundaries, the estimator remains
poor. Note that an empirical estimate of the survival probability
is not an option outside the layer boundaries, since an empiri-
cal estimator is only available at the layer boundaries. For the
Pareto, with 250 observations, the variance is very close to the
asymptotic variance, but there is still some significant bias in the
tail.

I have displayed results for only one distribution. The most
notable feature that differs by distribution is that, generally
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speaking, for a given number of observations and a given sur-
vival probability, the thinner the tail of a distribution, the smaller
the variance. Roughly, this is because there is less spread in the
mixing distribution of mixed exponential distributions with thin-
ner tails than in those with thicker tails.

7. ADJUSTMENTS AND OTHER USES

In this section, I will first address the issue of estimating the
tail of a distribution. Table 1 showed only survival probabili-
ties up to 1,000,000. Table 4 shows survival probabilities up to
100,000,000. The first distribution in the table is the mixed ex-
ponential that we fit previously. The second distribution is the
mixed exponential that results when we move one claim from the
675,000–1,000,000 group to the 475,000–675,000 group. The
survival probabilities are very close to one another except in the
tail. When we move one claim, we acquire a mean of infinity with
a small positive weight. The survival function now approaches
the value of this weight, instead of zero, as the loss amount ap-
proaches infinity. For comparison, Table 4 also shows the Pareto
and lognormal distributions from Table 1. If we were to move
this same claim and then fit a Pareto or lognormal distribution,
the tails would be very close to those from Table 1. However, we
have no way to tell from the available data whether either of them
is anywhere close to the actual tail. The tails of the Pareto and
lognormal distributions are between the two mixed exponential
tails, and are also very different from one another.

Thus we see that we cannot reliably use the mixed exponential
distribution or any parametric distribution to extrapolate beyond
the available data. However, an advantage of the mixed exponen-
tial is that if other data is available to assist in estimating the tail,
or if we simply use judgment, we can find a mixed exponential
distribution that both fits the available data and produces the de-
sired tail. For example, suppose we believe that the tail is likely
to have a shape like the Pareto tail. We may base this belief on
data we have from a similar source or simply judgment. We can
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add eight more group boundaries as shown in Table 4 to increase
the number of groups to 25. We can then allocate the three claims
above 1,000,000 to the nine groups above 1,000,000 so that the
empirical survival probabilities above 1,000,000 match those of
the Pareto distribution. We can then find a maximum likelihood
estimate based on these 25 groups. The last two columns of Table
4 show the resulting distribution. The mixed exponential distri-
bution is flexible enough so that we can append whatever tail we
think appropriate while affecting the fit in the lower portion of
the distribution very little.

In the example above, we adjusted the data before fitting to
produce an appropriate tail. We may need to adjust the data for
other reasons. For example, we may have to adjust for loss devel-
opment. I will not discuss this issue further in this paper. How-
ever, such adjustments would change the empirical distribution
to which we fit.

Just as we may adjust the data, we may also need to adjust
the fitted distribution. The best fitting distribution, which sat-
isfies the KKT conditions, will not, in all cases, be the most
appropriate estimate to use. When conditions warrant, we may
set any of the means and weights at fixed values before fitting.
For example, despite any data adjustments we have made, if the
best fitting distribution contains a mean of infinity, we may fix
the largest mean and possibly its weight at a value that yields a
tail that we feel is more appropriate. As another example, if we
are fitting a number of distributions as part of the same project,
we may find it convenient to use the same fixed means for each
distribution. If the means are not too far apart, the resulting dis-
tributions are likely to fit almost as well as if we had not fixed
the means. We could also impose constraints on the relationships
among the means and weights through the use of Lagrange mul-
tipliers. Also, we could, through trial and error, simply select a
distribution that visually fits the data well.

We can use the mixed exponential distribution for more than
modeling losses. We can use the mixed exponential to model
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anything where we expect a function with alternating deriva-
tives. For example, I have found it useful in modeling the prob-
ability that a claim does not have any allocated loss adjustment
expense attached to it as a function of the claim size. This is not
a probability function, so we cannot use maximum likelihood
estimation. However, we can use a least squares procedure to fit
the distribution to the data.

8. CONCLUSION

In this paper, I have tried to provide the background needed
for an actuary to begin using the mixed exponential distribution
in his or her work. I believe that the combination of flexibility
and smoothness that the mixed exponential provides makes it an
extremely useful actuarial modeling tool.
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APPENDIX A

In this appendix, I will address the issue of which of the para-
metric distributions generally used to model losses have com-
pletely monotone density functions and are thus special cases
of the mixed exponential distribution. I will use the same pa-
rameterizations that are used in Klugman, Panjer, and Willmot
[8].

The transformed beta distribution has probability density
function

f(x) =
¡ (®+ ¿)
¡ (®)¡ (¿)

°(x=µ)°¿

x[1+ (x=µ)°]®+¿
:

If °¿ > 1, then f(x) is not completely monotone because it
has a nonzero mode.

If °¿ # 1 and ° # 1, then f(x) is completely monotone. To
see this, note that, ignoring factors not involving x, we can write
f(x) as the product of x°¿"1 and [1+ (x=µ)°]"®"¿ . The first factor
is clearly completely monotone. We can use induction with the
product rule for differentiation to show that the second factor is
completely monotone. Similarly, we can use induction to show
that the product of the two factors is also completely monotone.
Feller [3, p. 441] gives a short proof of the fact that the product
of completely monotone functions is also completely monotone.

Notable special cases of the transformed beta distribution that
are also special cases of the mixed exponential distribution are
the Pareto (which has ° and ¿ fixed at 1) and the Burr (which
has ¿ fixed at 1) with ° # 1.
The set of parameters for which f(x) is completely monotone

when °¿ # 1 and ° > 1 is an open question. If ° is too large,
then f(x) will not be completely monotone, but I could not find
a proof that would definitively determine the status of all distri-
butions with parameters in this region.
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The transformed gamma distribution has probability density
function

g(x) =
¿(x=µ)®¿e"(x=µ)¿

x¡ (®)
:

If ®¿ > 1, then g(x) is not completely monotone because it
has a nonzero mode.

If ¿ > 1, then g(x) is not completely monotone because it has
an increasing failure rate in the tail.

If ®¿ # 1 and ¿ # 1, then g(x) is completely monotone. To see
this, note that, ignoring factors not involving x, we can write g(x)
as the product of x®¿"1 and e"(x=µ)¿ . These are both completely
monotone, so their product is completely monotone.

Notable special cases of the transformed gamma distribution
that are also special cases of the mixed exponential distribu-
tion are the gamma (which has ¿ fixed at 1) with ®# 1 and
the Weibull (which has ® fixed at 1) with ¿ # 1.
The inverse transformed gamma, lognormal, and inverse

Gaussian distributions are never completely monotone, since
they always have nonzero modes.

All of the distributions mentioned, except for the transformed
gamma with certain parameters (¿ > 1 or ¿ = 1, ®$ 1), have
decreasing failure rates in the tail.
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APPENDIX B

In this appendix, I will provide proofs of the key properties
underlying maximum likelihood estimation with the mixed expo-
nential distribution—first for ungrouped data, then for grouped
data.

Ungrouped Data

The loglikelihood function is

lnL(w1,w2, : : :) =
m"
k=1

lnf(xk) =
m"
k=1

ln

) %"
i=1

wi¸ie
"¸ixk

*
,

where m is the number of observations. We must find the set
of wi’s that maximizes the loglikelihood function, subject to the
constraints that each of the wi’s must be greater than or equal to
zero and the sum of the wi’s must be one. From now on, when
I refer to maximizing the loglikelihood function, I mean max-
imizing the loglikelihood function subject to these constraints.
We consider the ¸i’s fixed and arbitrarily close together. Thus,
the only parameters are the wi’s.

The ln function is strictly concave and the sum of strictly
concave functions is also strictly concave.12 This fact allows us
to conclude that if more than one set of wi’s maximizes the
loglikelihood function, each set must yield identical values of-%
i=1wi¸ie

"¸ixk for each xk. If two sets of wi’s yielding different
values of

-%
i=1wi¸ie

"¸ixk maximized the loglikelihood function,
each set of wi’s on the line segment between them (which would
satisfy the constraints) would yield a value of the loglikelihood
function greater than the maximum (since

-%
i=1wi¸ie

"¸ixk is a
linear function of the wi’s). Clearly, this cannot be.

12See Appendix 2 of Hillier and Lieberman [4] for a discussion of concavity and
convexity.
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We can view maximizing the loglikelihood function as a con-
vex programming problem, since the loglikelihood function is
concave and the constraints are linear (and thus convex). The
theory of convex programming gives us a set of necessary and
sufficient conditions, the Karush–Kuhn–Tucker (KKT) condi-
tions, for the loglikelihood function to be at a maximum. For
ungrouped data, these conditions are

@ lnL
@wi

=
m"
k=1

¸ie
"¸ixk

%"
j=1

wj¸je
"¸jxk

# u, if wi = 0

and

@ lnL
@wi

=
m"
k=1

¸ie
"¸ixk

%"
j=1

wj¸je
"¸jxk

= u, if wi > 0

for some number u. If we sum the KKT conditions, giving weight
wi to each element of the sum, we have

u=
%"
i=1

wiu=
%"
i=1

wi
@ lnL
@wi

=
%"
i=1

m"
k=1

wi¸ie
"¸ixk

%"
j=1

wj¸je
"¸jxk

=
m"
k=1

%"
i=1

wi¸ie
"¸ixk

%"
j=1

wj¸je
"¸jxk

=m:

Thus, we see that u must be equal to m, the number of observa-
tions.13

13See Chapter 13 of Hillier and Lieberman [4] for an introductory treatment of convex
programming. Jewell [6] gave a direct derivation of the Karush–Kuhn–Tucker conditions
for the mixed exponential case.
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We now examine the function

h(¸) =
m"
k=1

¸e"¸xk
%"
j=1

wj¸je
"¸jxk

, 0# ¸#%:

To satisfy the KKT conditions, this function must have a maxi-
mum of m that occurs at the points corresponding to where wi is
greater than zero. We first note that h(0) = h(%) = 0, so the wi’s
corresponding to ¸i’s of zero and infinity must be zero. Taking
the derivative of h(¸) gives

dh

d¸
=

m"
k=1

("¸xk +1)e"¸xk
%"
j=1

wj¸je
"¸jxk

:

Polyá and Szegö [15] showed that an exponential polynomial
of the form

-m
k=1pk(¸)e

"¸xk that is not zero everywhere, where
pk is a real ordinary polynomial of degree dk, has at most-m
k=1 (dk +1)"1 zeros.14 Thus dh=d¸ has at most 2m"1 ze-

ros. When the KKT conditions are satisfied, dh=d¸ must be zero
where h(¸) assumes the value m on (0,%). Since maxima must
alternate with minima (where dh=d¸ must also be zero), h(¸) can
assume the value m at no more than m points on (0,%). Since the
wi’s corresponding to ¸i’s of zero and infinity are zero, the num-
ber of positive wi’s at the point that the loglikelihood function is
at its maximum is at most m, the number of observations.15 We
can also see that none of the corresponding ¸i’s can be less than
1=xm, where xm is the largest observation, since every term of the
expression for dh=d¸ is positive for ¸ less than 1=xm. Likewise,
none of the ¸i’s can be greater than 1=x1, where x1 is the small-
est observation, since every term of the expression for dh=d¸ is
negative for ¸ greater than 1=x1.

14See Part Five, Problem 75 of Polyá and Szegö [15].
15Using a more general technique, Lindsay [10] showed that this is true for mixtures of
any type of distribution.
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We will now determine whether the loglikelihood can attain
its maximum at more than one set of wi’s. We do know that if
more than one set yielded the maximum, each set would have to
give the same value of

-n
i=1wi¸ie

"¸ixk for each xk. Let ¸1, : : : ,¸n
be the points at which the wi’s are positive where the loglike-
lihood is at its maximum. If more than one set of wi’s gave
the same value of

-n
i=1wi¸ie

"¸ixk for each xk, then the function-n
i=1 (wi"w&i )¸ie"¸ix would have at least m zeros, one for each

xk. From Polyá and Szegö’s result, this function can have no
more than n"1 zeros. Since we have already determined that
n#m, we have a contradiction. We thus conclude that the log-
likelihood attains its maximum at a unique set of wi’s.

16

Grouped Data

The loglikelihood function is

lnL(w1,w2, : : :) = a1ln (1" S(b1))+
g"1"
k=2

akln (S(bk"1)" S(bk))

+ agln(S(bg"1))

= a1ln

) %"
i=1

wi(1" e"¸ib1)
*

+
g"1"
k=2

akln

) %"
i=1

wi(e
"¸ibk"1 " e"¸ibk )

*

+ agln

) %"
i=1

wi(e
"¸ibg"1)

*
,

where g is the number of groups, a1, : : : ,ag are the number of
observations in each group, and b1, : : : ,bg"1 are the group bound-
aries. We will assume that any adjacent groups that all have zero
observations have been combined into one group. The develop-
ment is analogous to that for ungrouped data down to where we

16The reasoning in this and the previous paragraph is taken from Jewell [6].
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examine the function

h(¸) = a1
1" e"¸b1

%"
j=1

wj(1" e"¸jb1)
+
g"1"
k=2

ak
e"¸bk"1 " e"¸bk

%"
j=1

wj(e
"¸jbk"1 " e"¸jbk )

+ ag
e"¸bg"1

%"
j=1

wj(e
"¸jbg"1 )

, 0# ¸#%:

We note that h(0) and h(%) are not necessarily equal to zero,
so the wi’s corresponding to ¸i’s of zero and infinity are not
necessarily equal to zero. Taking the derivative of h(¸) gives

dh

d¸
= a1

b1e
"¸b1

%"
j=1

wj(1" e"¸jb1)
+
g"1"
k=2

ak
"bk"1e"¸bk"1 +bke"¸bk
%"
j=1

wj(e
"¸jbk"1 " e"¸jbk )

+ ag
"bg"1e"¸bg"1
%"
j=1

wj(e
"¸jbg"1)

=
g"1"
k=1

./////0
ak

%"
j=1

wj(e
"¸jbk"1 " e"¸jbk )

" ak+1
%"
j=1

wj(e
"¸jbk " e"¸jbk+1)

1222223
'bke"¸bk ,

where b0 = 0 and bg =%.

We may now apply Polyá and Szegö’s result, except if all of
the g"1 coefficients in the above equation are zero. This will
occur only when the mixed exponential probabilities for each
group are exactly proportional to the number of observations in
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each group or, in other words, when the data perfectly fits the
model. For this situation, we can easily come up with examples
where an arbitrarily large number of different mixed exponential
distributions, each with an arbitrarily large number of positive
wi’s, will maximize the loglikelihood function. However, a per-
fect fit is highly unlikely unless the number of groups is very
small.

When the fit is not perfect, Polyá and Szegö’s result ensures
that dh=d¸ has at most g"2 zeros. Thus, when the KKT condi-
tions are satisfied, h(¸) can assume the value m on (0,%) at no
more than g=2"1 points if g is even and no more than g=2" 1=2
points if g is odd. This places a bound on the number of positive
wi’s with corresponding ¸i’s on (0,%) at the point that the log-
likelihood function is at its maximum. In addition, it is possible
that the wi’s corresponding to ¸i’s of zero and infinity may be
positive.

We now move to the proof of uniqueness. Let ¸1, : : : ,¸n
be the points at which the wi’s are positive where the log-
likelihood is at its maximum. If more than one set of wi’s
maximized the loglikelihood, each would have to give the
same value of

-n
i=1wi(e

"¸ibk"1 " e"¸ibk ) for each group with a
nonzero number of observations (where bk"1 and bk are the
group boundaries). Since adjacent groups with zero observa-
tions have been combined, the minimum number of such groups
will be g=2 if g is even and g=2"1=2 if g is odd. There-
fore,

-n
i=1 (wi"w&i )(e"¸ibk"1 " e"¸ibk ) has to be zero for each of

these groups. This implies that, for each group, the function-n
i=1 (wi"w&i )e"¸ix has the same value at both bk"1 and bk. Thus

the derivative of this function must be zero somewhere between
bk"1 and bk. Therefore, the function

-n
i=1 (wi"w&i )¸ie"¸ix must

have at least g=2 zeros if g is even and at least g=2"1=2 ze-
ros if g is odd. From Polyá and Szegö’s result, this function
can have no more than n& "1 zeros, where n& is the number
of ¸i’s at which the wi’s are positive, excluding ¸i’s of zero
and infinity (since these terms drop out of the function). Since
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we have already determined that n& # g=2"1 if g is even and
n& # g=2"1=2 if g is odd, we have a contradiction. We thus
conclude that the loglikelihood attains its maximum at a unique
set of wi’s.

17

17Using a more general technique, Lindsay and Roeder [13] derived similar results to
those for grouped data shown here. Those results apply to mixtures of a broader class of
distributions.
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APPENDIX C

Use of Newton’s method requires calculation of the gradient
vector of first partial derivatives and the Hessian matrix of second
partial derivatives of the loglikelihood function.

In the derivatives that follow, w1 is not a real parameter, but
we set w1 equal to one minus the sum of the other wi’s.

18+
@ lnL
@¸i

,
k

and
+
@ lnL
@wi

,
k

refer to the terms of the first partial derivatives corresponding
to the kth observation (for ungrouped data) or kth group (for
grouped data).

For ungrouped data, the required derivatives are

@ lnL
@¸i

=
m"
k=1

+
@ lnL
@¸i

,
k

=
m"
k=1

wi(1"¸ixk)e"¸ixk
n"
j=1

wj¸je
"¸jxk

,

i= 1, : : : ,n,

@ lnL
@wi

=
m"
k=1

+
@ lnL
@wi

,
k

=
m"
k=1

¸ie
"¸ixk "¸1e"¸1xk
n"
j=1

wj¸je
"¸jxk

,

i= 2, : : : ,n,

@2lnL
@¸2i

=
m"
k=1

./////0
wixk(¸ixk "2)e"¸ixk

n"
j=1

wj¸je
"¸jxk

"
)+
@ lnL
@¸i

,
k

*2
1222223,

i= 1, : : : ,n,

18An alternative way to formulate the problem would be to keep w1 as a parameter and
use a Lagrange multiplier to ensure that the sum of the wi’s is one.
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@2lnL
@¸i@¸l

=
m"
k=1

4
"
+
@ lnL
@¸i

,
k

+
@ lnL
@¸l

,
k

5
,

i= 1, : : : ,n, l = 1, : : : ,n, i )= l,
@2lnL
@wi@wl

=
m"
k=1

4
"
+
@ lnL
@wi

,
k

+
@ lnL
@wl

,
k

5
,

i= 2, : : : ,n, l = 2, : : : ,n,

@2lnL
@¸1@wi

=
m"
k=1

./////0
"(1"¸1xk)e"¸1xk

n"
j=1

wj¸je
"¸jxk

"
+
@ lnL
@¸1

,
k

+
@ lnL
@wi

,
k

1222223,

i= 2, : : : ,n,

@2lnL
@¸i@wi

=
m"
k=1

./////0
(1"¸ixk)e"¸ixk
n"
j=1

wj¸je
"¸jxk

"
+
@ lnL
@¸i

,
k

+
@ lnL
@wi

,
k

1222223,

i= 2, : : : ,n,

and
@2lnL
@¸i@wl

=
m"
k=1

4
"
+
@ lnL
@¸i

,
k

+
@ lnL
@wl

,
k

5
,

i= 2, : : : ,n, l = 2, : : : ,n, i )= l:

For grouped data, the required derivatives are

@ lnL
@¸i

=
g"
k=1

ak

+
@ lnL
@¸i

,
k

=
g"
k=1

ak
wi("bk"1e"¸ibk"1 +bke"¸ibk )

n"
j=1

wj(e
"¸jbk"1 " e"¸jbk )

,

i= 1, : : : ,n,
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@ lnL
@wi

=

g"
k=1

ak

+
@ lnL
@wi

,
k

=
g"
k=1

ak
(e"¸ibk"1 " e"¸ibk )" (e"¸1bk"1 " e"¸1bk )

n"
j=1

wj(e
"¸

j
b
k"1 " e"¸jbk )

,

i = 2, : : : ,n,

@2lnL
@¸2i

=
g"
k=1

ak

./////0
wi(b

2
k"1e

"¸
i
b
k"1 " b2k e"¸ibk )

n"
j=1

wj(e
"¸

j
b
k"1 " e"¸jbk )

"
++

@ lnL
@¸i

,
k

,2
1222223,

i = 1, : : : ,n,

@2lnL
@¸i@¸l

=
g"
k=1

ak

6
"
+
@ lnL
@¸i

,
k

+
@ lnL
@¸l

,
k

7
,

i = 1, : : : ,n, l = 1, : : : ,n, i )= l,
@2lnL
@wi@wl

=
g"
k=1

ak

6
"
+
@ lnL
@wi

,
k

+
@ lnL
@wl

,
k

7
,

i = 2, : : : ,n, l = 2, : : : ,n,

@2lnL
@¸1@wi

=
g"
k=1

ak

./////0
(bk"1e

"¸1bk"1 " bke"¸1bk )
n"
j=1

wj(e
"¸

j
b
k"1 " e"¸jbk )

"
+
@ lnL
@¸1

,
k

+
@ lnL
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,
k

1222223,
i = 2, : : : ,n,

@2lnL
@¸i@wi

=
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k=1

ak

./////0
("bk"1e"¸ibk"1 + bke"¸ibk )
n"
j=1

wj(e
"¸

j
b
k"1 " e"¸jbk )

"
+
@ lnL
@¸i

,
k

+
@ lnL
@wi

,
k

1222223,
i = 2, : : : ,n,
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and
@2lnL
@¸i@wl

=
g"
k=1

ak

4
"
+
@ lnL
@¸i

,
k

+
@ lnL
@wl

,
k

5
,

i= 2, : : : ,n, l = 2, : : : ,n, i )= l:

The Newton step is the inverse of the Hessian matrix multi-
plied by the negative of the gradient vector. To remove one of the
parameters from the iterative process without reconstructing the
entire gradient and Hessian, set that parameter’s component of
the gradient to zero, its diagonal element of the Hessian matrix
to one, and the off-diagonal elements of its row and column of
the Hessian matrix to zero.

With ungrouped data, the fitted mixed exponential mean will
always equal the sample mean at both the global maximum and
at local maxima. To see this, first note that each of the @ lnL=@wi
values must be zero, so the KKT equalities are satisfied. We have
seen that this implies that

m"
k=1

¸ie
"¸ixk

n"
j=1

wj¸je
"¸jxk

=m, i= 1, : : : ,n:

Since each of the @ lnL=@¸i values must be zero, we may sum
over them to obtain

n"
i=1

m"
k=1

wi(1"¸ixk)e"¸ixk
n"
j=1

wj¸je
"¸jxk

=
n"
i=1

./////0wi
1
¸i

m"
k=1

¸ie
"¸ixk
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wj¸je
"¸jxk

1222223

"
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k=1

./////0xk
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i=1

wi¸ie
"¸ixk
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j=1

wj¸je
"¸jxk

1222223=m
n"
i=1

wi
1
¸i
"

m"
k=1

xk = 0:
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Since 1=¸i is the mean of the ith exponential distribution in the
mixture, we can see that the mixed exponential mean must indeed
be equal to the sample mean.

Also, with ungrouped data, the fitted mixed exponential vari-
ance will not be less than the sample variance at the global max-
imum. To see this, first note that at each of the ¸i’s with positive
weight attached, d2h=d¸2 must be less than or equal to zero. We
may sum over these second derivatives, giving weight wi to each
element of the sum, to obtain

n"
i=1

m"
k=1

wi(¸ix
2
k "2xk)e"¸ixk

n"
j=1

wj¸je
"¸jxk

=
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k=1

./////0x2k
n"
i=1
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"¸ixk
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wj¸je
"¸jxk

1222223
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¸ie
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=
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2
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To get from the term in the second line above to the second
term in the third line, we use the fact that each of the @ lnL=@¸i
values must be zero. Since 2=¸2i is the second moment of the ith
exponential distribution in the mixture, and since we know that
the mixed exponential mean must be equal to the sample mean,
we can see that the mixed exponential variance cannot be less
than the sample variance.19

19Lindsay [9] showed that these moment relationships hold for mixtures of a broader
class of distributions.


